Question

An 8.0-g bullet is shot into a 4.0-kg block, at rest on a frictionless horizontal surface...

An 8.0-g bullet is shot into a 4.0-kg block, at rest on a frictionless horizontal surface (see the figure). The bullet remains lodged in the block. The block moves into an ideal massless spring and compresses it by 8.7 cm. The spring constant of the spring is 2400 N/m. The initial velocity of the bullet is closest to

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A wooden block is at rest on a frictionless horizontal surface and is connected to a...
A wooden block is at rest on a frictionless horizontal surface and is connected to a spring (k =150 N/m). The mass of the wooden block is 0.10 kg. A bullet (mass 0.012 kg) and velocity 270 m/s is fired horizontally into the wooden block. After collision the bullet stays in the block. (a) Find the speed of the bullet-block system right after the collision. (b) If the bullet-block system compresses the spring by a maximum of d. Find d
A rifle bullet with mass 8.00 g strikes and embeds itself in a block with a...
A rifle bullet with mass 8.00 g strikes and embeds itself in a block with a mass of 0.992 kg that rests on a frictionless, horizontal surface and is attached to a coil spring. (See (Figure 1).) The impact compresses the spring 15.0 cm . Calibration of the spring shows that a force of 0.650 N is required to compress the spring 0.200 cm . Find the magnitude of the block's velocity just after impact (m/s) What was the initial...
A 12.0-g bullet is fired horizontally into a 116-g wooden block that is initially at rest...
A 12.0-g bullet is fired horizontally into a 116-g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 151 N/m. The bullet becomes embedded in the block. If the bullet-block system compresses the spring by a maximum of 81.0 cm, what was the speed of the bullet at impact with the block?
A 30-gram bullet is shot with an initial speed Vo and embeds in 4.0 kg block...
A 30-gram bullet is shot with an initial speed Vo and embeds in 4.0 kg block sitting on a level surface. The bulle-/block slide 12m before coming to rest. The coefficient of kinetic friction between the block and the surface is 0.6. Determine the initial speed of the bullet.
A 58 gram bullet with a horizontal velocity of 240 m/s hits a 1.3 kg block...
A 58 gram bullet with a horizontal velocity of 240 m/s hits a 1.3 kg block of wood attached to a massless spring with spring constant 340 N/m. The bullet is embedded in the block and the block is resting on a frictionless horizontal surface. How far does the spring compress?
A block of mass M = 5.80 kg, at rest on a horizontal frictionless table, is...
A block of mass M = 5.80 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 6250 N/m. A bullet of mass m = 8.30 g and velocity of magnitude 570 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b) the...
A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is...
A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 5860 N/m. A bullet of mass m = 9.20 g and velocity ModifyingAbove v With right-arrow of magnitude 660 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the...
A 5.00-g bullet moving with an initial speed of v0 = 410 m/s is fired into...
A 5.00-g bullet moving with an initial speed of v0 = 410 m/s is fired into and passes through a 1.00-kg block, as in the figure below. The block, initially at rest on a frictionless horizontal surface, is connected to a spring with a spring constant of 940 N/m. (a) If the block moves 5.00 cm to the right after impact, find the speed at which the bullet emerges from the block. (b) If the block moves 5.00 cm to...
m1 = 2.2 kg block slides on a frictionless horizontal surface and is connected on one...
m1 = 2.2 kg block slides on a frictionless horizontal surface and is connected on one side to a spring (k = 45 N/m) as shown in the figure above. The other side is connected to the block m2 = 4 kg that hangs vertically. The system starts from rest with the spring unextended. a) What is the maximum extension of the spring? m a) What is the speed of block m2 when the extension is 45 cm?
A rifle bullet with mass 15.0 g strikes and embeds itself in a block of mass...
A rifle bullet with mass 15.0 g strikes and embeds itself in a block of mass 1.500 kg that rests on a frictionless, horizontal surface and is attached to a coil spring. The spring was relaxed at the beginning. The spring constant is 550 N/m. The initial velocity of the bullet was 700 m/s. The impact compresses the spring by x (see figure below). 1) Find the magnitude of the block's velocity (with the bullet stuck inside) after the impact...