Question

A mysterious new planet has a radius of R = 6800 kilometers. In order to take...

A mysterious new planet has a radius of R = 6800 kilometers. In order to take pictures of the surface of the planet, you launch a satelite into a circular orbit at an altitude of h = 900 kilometers above the surface of the planet. You measure the period of the orbit to be 3.75 Hours.
A) What is the mass of the planet, in Kilograms?
B) Suppose the satelite was launched at an altitude of h = 7800 kilometers above the surface of the planet. What would the period be in this case? Give your answer in units of hours.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An artificial satellite is in a circular orbit around a planet of radius r = 2.25...
An artificial satellite is in a circular orbit around a planet of radius r = 2.25 × 103 km at a distance d = 380.0 km from the planet\'s surface. The period of revolution of the satellite around the planet is T = 1.15 hours. What is the average density of the planet?
1.Zero, a hypothetical planet, has a mass of 4.9 x 1023 kg, a radius of 3.3...
1.Zero, a hypothetical planet, has a mass of 4.9 x 1023 kg, a radius of 3.3 x 106 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of 5.0 x 107 J, what will be its kinetic energy when it is 4.0 x 106 m from the center of Zero? (b) If the probe is to achieve a maximum distance of...
Your starship, the Aimless Wanderer, lands on the mysterious planet Mongo. As chief scientist-engineer, you make...
Your starship, the Aimless Wanderer, lands on the mysterious planet Mongo. As chief scientist-engineer, you make the following measurements: a 2.50-kg stone thrown upward from the ground at 15.0 m/s returns to the ground in 7.00 s ; the circumference of Mongo at the equator is 4.00×105 km ; and there is no appreciable atmosphere on Mongo. a.The starship commander, Captain Confusion, asks for the following information: what is the mass of Mongo? b. If the Aimless Wanderer goes into...
An unknown planet has two spherical moons in circular orbits. The following table summarizes the hypothetical...
An unknown planet has two spherical moons in circular orbits. The following table summarizes the hypothetical data about the moons. Both moons have low axial spin rates. G = 6.67 10^-11 Nm^2/kg^2 Mass Radius Orbital radius Orbital period Moon A 8.0 × 10^20 kg 2.0 × 10^8 m 4.0 × 10^6 s Moon B 3.0 × 10^20 kg 2.0 × 10^5 m 3.0 × 10^8 m 1) What is (in m/s^2) the acceleration due to gravity at the surface of...
A satellite of mass m = 2.00 ×103 kg is launched into a circular orbit of...
A satellite of mass m = 2.00 ×103 kg is launched into a circular orbit of orbital period T = 4.00 hours. Newton's gravitational constant is G = 6.67 ×10−11 N∙m2/kg2, and the mass and radius of the Earth are respectively M⨁ = 5.97 ×1024 kg and r⨁ = 6.37 ×106 m. Answer the following questions. What is the total mechanical energy (kinetic energy + potential energy) of the satellite in orbit? Take the gravitational potential energy of the satellite...
a) In 2017, NASA announced the discovery of seven planets with sizes similar to the Earth...
a) In 2017, NASA announced the discovery of seven planets with sizes similar to the Earth orbiting a red dwarf star 40 light years away. Based on the data in the table shown, what is the acceleration due to gravity on planet g? (B) Use the orbital data for planet g and Kepler's 3rd Law to find the mass of the star these planets orbit. Give your answer relative to the Sun's mass. For example, if the star were 1/2...
Mercury has a radius of 2440 km. A satellite is in circular orbit around Mercury. It...
Mercury has a radius of 2440 km. A satellite is in circular orbit around Mercury. It travels at a distance of 124 km above the surface and its period of rotation is 1 hour 31.5 minutes. a) Estimate the Mass of Mercury. State which formula(s) you applied and why. b) Estimate Mercury's mean density. You can assume a spherical planet. c) Compare your answer to the mean density of Earth. Why is it larger/smaller?
Consider a satellite of mass m in a circular orbit of radius r around the Earth...
Consider a satellite of mass m in a circular orbit of radius r around the Earth of mass ME and radius RE. 1. What is the gravitational force (magnitude and direction) on the satellite from Earth? 2. If we define g(r) to be the force of gravity on a mass m at a radial distance r from the center of the Earth, divided by the mass m, then evaluate the ratio g(r)/g(RE)to see how g varies with radial distance. If...
You are in a 5.000x106 kg spherical spaceship (R = 100.0 m) and you notice that...
You are in a 5.000x106 kg spherical spaceship (R = 100.0 m) and you notice that there is a 2.000 kg ribeye steak in a perfectly circular orbit around your spaceship! You really want that steak. You measure the steak’s orbital period to be 94.01 hours. Your mass is 80.00 kg. a) What is the height of the steak above the surface of the spaceship (H)? b) You jump from the surface to catch the steak. What initial speed do...
** Please answer the question without using Calculus. This is an algebra based Physics course. Thank...
** Please answer the question without using Calculus. This is an algebra based Physics course. Thank you! ** Isaac Newton guessed at the concept of his law of universal gravitation. However, he did consider other possibilities, too. Imagine we take the acceleration due to gravity to obey an inverse-cube rather than inverse-square equation: a = GM/r3. Again, M is the mass of a spherical, homogeneous body, r is the radial distance from the center of that body to any point...