Question

Frames k and k' are inertial frames. Frame k' is moving at a velocity of magnitude...

Frames k and k' are inertial frames. Frame k' is moving at a velocity of magnitude v relatively to frame k in the direction of the x-axis. There are rigid rods in each frame oriented along the direction of the relative velocity. Someone in frame k measures the rod that is stationary in k as having a length L1 and the rod stationary in frame k' as having a length L'2. What are the lengths of the rods measured by someone in frame k'?

Homework Answers

Answer #1

Always remember person is stationary in his frame and other frame is moving according to him. Length of moving rod is contracted.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. In one inertial reference frame, an electron is observed traveling with a velocity of magnitude...
1. In one inertial reference frame, an electron is observed traveling with a velocity of magnitude v in the positive x-direction, where v is 0.6c. What are the momentum and total energy of the electron in that inertial reference frame in terms of v and the rest mass of the electron? What are the speed, momentum and energy of that electron as measured in a reference frame that is traveling at a velocity of magnitude v/2 in the positive x-direction?...
1. The origins of two inertial frames coincide at t = 0. The K’ frame moves...
1. The origins of two inertial frames coincide at t = 0. The K’ frame moves relative to the K frame at a velocity of 0.92c in the +y direction. A proton is at rest in the K frame. What is the momentum 4-vector of the proton, (E/c, px, py, pz) in the K’ frame (in units of MeV/c)?
Which of the following inertial reference frames are proper frames for the two events listed? Choose...
Which of the following inertial reference frames are proper frames for the two events listed? Choose all that apply. RED FRAME: Event A happened at a different place than event B. ORANGE FRAME: Event C happened at (9 m, 7 m, -6 m) and event D happened at (-9 m, 0.7 m, -6 m). YELLOW FRAME: The distance between where event E occurred and where event F occurred was 4 m. GREEN FRAME: A rocket was traveling at a constant...
A stick with a proper length l0 is moving past a stationary frame S with V...
A stick with a proper length l0 is moving past a stationary frame S with V = c/2. In the frame S′ of the stick, the angle between the stick and its direction of motion is φ0 = 45◦ . Find the length of the stick and the angle it makes to its velocity, as measured in the frame S. (relativity)
1) Consider two inertial reference frames, S and S’ where S’ is moving to the right...
1) Consider two inertial reference frames, S and S’ where S’ is moving to the right with a constant velocity of 0.895 c as measured by an observer in S. A stick of proper length 0.878 m moves to the left toward the origins of both S and S’, and the length of the stick is 31.1 cm as measured by an observer in S’. Determine the velocity of the stick as measured by an observer in S’. Answer in...
16. A rod lies parallel to the x axis of reference frame S, moving along this...
16. A rod lies parallel to the x axis of reference frame S, moving along this axis at a speed of 0.567c. Its rest length is 2.39 m. What will be its measured length in frame S? 17. In a high-energy collision between a cosmic-ray particle and a particle near the top of Earth's atmosphere, 131 km above sea level, a pion is created.The pion has a total energy E of 1.61 × 105 MeV and is traveling vertically downward....
Two events are observed by inertial observer Stampy to occur a spatial distance of 15 c·s...
Two events are observed by inertial observer Stampy to occur a spatial distance of 15 c·s apart with the spatial coordinate of the second larger than the spatial coordinate of the first. Stampy also determines that the second event occurred 17 s after the first. According to inertial observer Philip moving along Stampy’s +x axis at unknown velocity v, the second event occurs 10 s after the first. (1 c·s = 1 light-second = unit of distance.) a) Given Philip...
A cylindrical rod of length 2.0 m, radius 0.5 m, and mass 1.5 kg has two...
A cylindrical rod of length 2.0 m, radius 0.5 m, and mass 1.5 kg has two spheres attached on its ends. The centers of the spheres are 1.0 m from the center of the rod. The mass of each sphere is 0.66 kg. The rod is capable of rotating about an axis passing through its center and perpendicular to the plane of the page, but the set up is stationary to begin with. A small mass of value 0.19 kgmoving...
A proton (q = 1.6 X 10-19 C, m = 1.67 X 10-27 kg) moving with...
A proton (q = 1.6 X 10-19 C, m = 1.67 X 10-27 kg) moving with constant velocity enters a region containing a constant magnetic field that is directed along the z-axis at (x,y) = (0,0) as shown. The magnetic field extends for a distance D = 0.75 m in the x-direction. The proton leaves the field having a velocity vector (vx, vy) = (3.9 X 105 m/s, 1.9 X 105 m/s). 1)What is v, the magnitude of the velocity...
Finding the Spring Constant We can describe an oscillating mass in terms of its position, velocity,...
Finding the Spring Constant We can describe an oscillating mass in terms of its position, velocity, and acceleration as a function of time. We can also describe the system from an energy perspective. In this experiment, you will measure the position and velocity as a function of time for an oscillating mass and spring system, and from those data, plot the kinetic and potential energies of the system. Energy is present in three forms for the mass and spring system....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT