Question

A 172 g block is launched by compressing a spring of constant k=200N/m a distance of...

A 172 g block is launched by compressing a spring of constant k=200N/m a distance of 15 cm. The spring is mounted horizontally, and the surface directly under it is frictionless. But beyond the equilibrium position of the spring end, the surface has coefficient of friction μ=0.27. This frictional surface extends 85 cm, followed by a frictionless curved rise, as shown in the figure

After launch, where does the block finally come to rest? Measure from the left end of the frictional zone

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass m = 200g is launched horizontally by a spring on a surface...
A block of mass m = 200g is launched horizontally by a spring on a surface with negligible friction. The spring has a spring constant of k = 300 N/m, and the initial compression of the spring is 8.0 cm. (a) What is the speed vlaunch of the block when it leaves the spring? (b) After the launch, the block then goes onto a smooth curved ramp (still negligible friction, shown above), which simply redirects the block’s launch velocity from...
A 0.5k block attached to a spring (k=200N/m) is sitting on top of a rough horizontal...
A 0.5k block attached to a spring (k=200N/m) is sitting on top of a rough horizontal surface. Initially a spring is stretched 10 cm from its equillibrium position. When released, the block moves and stops 8 cm past the equillibrium position in the other direction. Find the friction coefficient between the block and surface.
A 1 kg block of wood is attached to a spring, of force constant 200 N/m,...
A 1 kg block of wood is attached to a spring, of force constant 200 N/m, which is attached to an immovable support. The block rests on a frictional surface with a coefficient of kinetic friction of 0.2. A 20 g bullet is fired into the block horizontally compressing the spring a maximum distance of 15 cm. Find the original velocity of the bullet before the collision.
Another block, another spring. This time around, the block (m = 1.18 kg) is compressing a...
Another block, another spring. This time around, the block (m = 1.18 kg) is compressing a spring with spring constant k = 273 N/m by 36.3 cm. It is released from rest so it then slides along the horizontal surface shown. This time, there is friction on the horizontal surface, with a coefficient of friction between the block and surface of μk = 0.11. In addition, there is a steady wind blowing to the right, exerting a constant 6.7 N...
A 12.0-g piece of clay is launched horizontally at a 105-g wooden block that is initially...
A 12.0-g piece of clay is launched horizontally at a 105-g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 45 N/m. The piece of clay sticks to the side of the block. If the clay-block system compresses the spring by a maximum of 16.0 cm, what was the speed of the piece of clay at impact with the block?
A 2.4 kg block is launched along a level frictionless plane using a spring with constant...
A 2.4 kg block is launched along a level frictionless plane using a spring with constant 3000 N/m. When the spring is still compressed 10 cm = 0.10 m the block has a speed of 5 m/s. The block travels up a frictionless inclined plane to another level frictionless plane that is 0.76 m above the first. There is a spring at the end of the plane with constant 4000 N/m. How much kinetic energy does the block have when...
A 130 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on...
A 130 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on a frictionless table. Its velocity is 20 cm/s when x0 = -4.0 cm . What is the block's maximum acceleration? What is the speed of the block when x1 = 3.2 cm ?
A 170 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on...
A 170 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on a frictionless table. Its velocity is 25 cm/s when x0 = -5.6 cm . What is the amplitude of oscillation? What is the block's maximum acceleration? What is the block's position when the acceleration is maximum? What is the speed of the block when x1 = 2.6 cm ?
A 120 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on...
A 120 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on a frictionless table. Its velocity is 17 cm/s when x0 = -4.5 cm . What is the amplitude of oscillation? What is the block's maximum acceleration? What is the block's position when the acceleration is maximum? What is the speed of the block when x1 = 2.9 cm ?
A 100 g block attached to a spring with spring constant 2.7 N/m oscillates horizontally on...
A 100 g block attached to a spring with spring constant 2.7 N/m oscillates horizontally on a frictionless table. Its velocity is 22 cm/s when x0 = -5.6 cm . What is the amplitude of oscillation? What is the block's maximum acceleration? What is the block's position when the acceleration is maximum? What is the speed of the block when x1 = 2.9 cm ?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT