Question

Some atomic processes can result in the emission of an electron from the atom. Electrons emitted...

Some atomic processes can result in the emission of an electron from the atom. Electrons emitted in this way can have discrete values of kinetic energy, which depend on the atomic energy levels. The probability that the electron has a particular value depends on interacions within the atom.

Suppose a particular atomic process results in three values of the electron kinetic energy:

  • Ψ1 has Ee = 10 eV, with probability 0.2.
  • Ψ2 has Ee = 16 eV, with probability 0.3.
  • Ψ3 has Ee = 34 eV, with probability 0.5.

The electron's wave function can be written as a quantum superposition: Ψ = aΨ1 + bΨ2 + cΨ3

What are the magnitudes of a, b, and c?

1) |a| =

2) |b| =

3) |c| =

4) Suppose we measure the energies of a large number of electrons that are all described by the wave function, Ψ, that you have just calculated. What will be the average value of your energy measurements? Eav =

5) Suppose we measure the kinetic energy of an outgoing electron and obtain KE = 16 eV. If we then measure the wavelength. What result will we obtain? λ =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
We can observe the differences in energy levels by observing the light that is emitted when...
We can observe the differences in energy levels by observing the light that is emitted when atoms are heated. When atoms are heated, the electrons can jump up to a higher energy level. When one electron falls back down to a lower energy level, a single photon of light is emitted with an energy equal to the difference in energy of the two levels. We call this atomic emission spectroscopy. If an electron in an atom jumps from the n...
In a photoelectric e↵ect experiment, the maximum kinetic energy of electrons ejected from a cesium metal...
In a photoelectric e↵ect experiment, the maximum kinetic energy of electrons ejected from a cesium metal plate is found to be 0.57eV when the plate is illuminated with 500 nm light. (a) Given what we know about the relation of wavelength and energy, how much energy does a single photon of 500 nm light have? (b) Given the results of this experiment, how much energy must the electron have used to break free of the atom? (c) When the same...
A beam of electrons accelerated by a voltage V hits a target made of atoms of...
A beam of electrons accelerated by a voltage V hits a target made of atoms of atomic number Z=20 . Suppose the atom ( Z=20) has a spherical and uniform distribution of outer electrons , so that Bohr's model can be used to describe its inner electron. An electron from the accelerated beam hits an atom of the target and ejects the innermost electron of the atom. Assuming that the electron of the beam transferred all its kinetic energy to...
A beam of electrons accelerated by a voltage V hits a target made of atoms of...
A beam of electrons accelerated by a voltage V hits a target made of atoms of atomic number Z=20 . Suppose the atom ( Z=20) has a spherical and uniform distribution of outer electrons , so that Bohr's model can be used to describe its inner electron. An electron from the accelerated beam hits an atom of the target and ejects the innermost electron of the atom. Assuming that the electron of the beam transferred all its kinetic energy to...
EMERGENCY! A beam of electrons accelerated by a voltage V hits a target made of atoms...
EMERGENCY! A beam of electrons accelerated by a voltage V hits a target made of atoms of atomic number Z=20 . Suppose the atom ( Z=20) has a spherical and uniform distribution of outer electrons , so that Bohr's model can be used to describe its inner electron. An electron from the accelerated beam hits an atom of the target and ejects the innermost electron of the atom. Assuming that the electron of the beam transferred all its kinetic energy...
11. The electron configuration of an atom a. is determined by the amount of kinetic energy...
11. The electron configuration of an atom a. is determined by the amount of kinetic energy present b. is found by calculating atomic mass c. is written as s,p,d,f subshells d. describes the specific distribution of electrons in a subshell ____12. The Pauli exclusion principle states that a. any atom with a free s orbital can form bonds b. no two atoms can occupy the same orbital unlesstheir spins are different c. 2 atoms sharing an orbital are matched exactly...
1. The shorter the wavelength of a photon, the more the photon behaves like a particle....
1. The shorter the wavelength of a photon, the more the photon behaves like a particle. Why? 2. In a H2 molecule there are two protons, and these have spin 1/2 ħ, that is, they are fermions. If we just look at the two protons, would you expect their spins to be parallel or anti parallel in the ground state of the H2 molecule? 3. Is there a type of viscosity that acts on holes in a semiconductor and gives...
1) The Pauli Exclusion Principle tells us that no two electrons in an atom can have...
1) The Pauli Exclusion Principle tells us that no two electrons in an atom can have the same four quantum numbers. Enter ONE possible value for each quantum number of an electron in the orbital given. Orbital n l ml ms 1s There are a total of values possible for ml. 2s There are a total of values possible for ml. 2) The Pauli Exclusion Principle tells us that no two electrons in an atom can have the same four...
An electron is one of the most fundamental particles in nature. It is everywhere, in all...
An electron is one of the most fundamental particles in nature. It is everywhere, in all the matter we can see, and it is with electrons that light interacts when it is emitted, absorbed, or scattered in everyday matter. The electron has a more massive cousin called a muon, also with a charge of -1 e, but with a mass of 1.88x10-28 kg. The electron's mass is 9.11x10-31 kg. You can see why a muon is called a "heavy" electron....
Question 1 Science affecting our daily lives is exemplified by: relying on hunches to solve crimes....
Question 1 Science affecting our daily lives is exemplified by: relying on hunches to solve crimes. using DNA evidence in criminal investigations. seeking the help of people with psychic visions in police work. relying entirely on preconceptions to identify people who may have committed crimes. 4 points Question 2 When an object’s velocity changes, which of the following must have occurred? A unbalanced force acted on the object. An balanced force acted on the object. The object started to deviate...