Question

A point source whose intensity is 1 W/sr is located 25 cm from a 10-cm focal...

A point source whose intensity is 1 W/sr is located 25 cm from a 10-cm focal length lens with a 5-cm diameter. What is the image intensity? What is the irradiance at the center of a screen

(a) 10 cm from the lens in object space

(b) 25 cm from the lens in image space

(c) 10 cm from the lens in image space

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An object is located 10 in. from a thin converging lens whose focal length is 30...
An object is located 10 in. from a thin converging lens whose focal length is 30 in. The image distance is approximately ____.
1. Consider a 1 mm bug located at your nearpoint, 25 cm away from your left...
1. Consider a 1 mm bug located at your nearpoint, 25 cm away from your left eye. 1a). Sketch the object, lens and image positions if the object is 1 mm in size and the image distance between the retina and lens in your eye is 1 cm. 1b). What focal length for your eye lens is needed to focus the bug’s image onto your retina? 1c). If you insert a convex magnifying glass 6 cm away from the bug,...
A mirror with a focal point of -50 cm is located 1 m behind a lens...
A mirror with a focal point of -50 cm is located 1 m behind a lens with a focal point of 80 cm. An object is placed 1 m in front of the lens. Determine the location of the final image? Determine the total magnification and the characteristic of the final image.
A lens has a focal length of 15 cm. An object is located 8 cm from...
A lens has a focal length of 15 cm. An object is located 8 cm from the surface of the lens. a. Calculate how far the image is from the lens. b. Tell whether the image is real or virtual. c. Calculate the magnification of the image (state whether the image is erect or inverted).
A converging lens with focal length 10.0 cm is located 28.0 cm to the left of...
A converging lens with focal length 10.0 cm is located 28.0 cm to the left of a diverging lens with focal length - 8.0 cm. An object is placed 36 cm to the left of the converging lens. Where is the final image located relative to the diverging lens? Select one: a) at infinity b) 13.9 cm to the right c) 14.2 cm to the right d) 5 cm to the left
1. If an object is inside the focal point of a concave mirror, the (answer choices:...
1. If an object is inside the focal point of a concave mirror, the (answer choices: image will be inverted, image will be real, image distance will be greater than the object distance, or magnification will be less than 1)? 2. A diverging lens has a of focal length of -58.5 cm. A real object is placed 25.3 cm in front of the lens. a.) What is the image distance? b.) Which side of the lens is the image located...
1. If an object is inside the focal point of a concave mirror, the (answer choices:...
1. If an object is inside the focal point of a concave mirror, the (answer choices: image will be inverted, image will be real, image distance will be greater than the object distance, or magnification will be less than 1)? 2. A diverging lens has a of focal length of -58.5 cm. A real object is placed 25.3 cm in front of the lens. a.) What is the image distance? b.) Which side of the lens is the image located...
A 3 cm. "tall" object is placed 25 cm. from a convex lens with a focal...
A 3 cm. "tall" object is placed 25 cm. from a convex lens with a focal length of 50 cm. Determine at what distance a focused image will appear. Determine the height of this image. Create a sketch (ray diagram) showing the scenario described above labeled as “A” and a scenario where everything is the same except the focal length of the lens is changed to 12.5 cm.
an object 1 cm high is 15 cm from a convex lens of 10 cm focal...
an object 1 cm high is 15 cm from a convex lens of 10 cm focal length. A) find the distance and size of the image graphically. B) find the distance and size of the image mathematically.
The tube length in a certain compound microscope is 25 cm. The focal length of the...
The tube length in a certain compound microscope is 25 cm. The focal length of the objective lens is 2.1 cm. The clearest image is formed when an object of height 1 mm is placed at a distance of 2.3 cm from the objective lens. Determine: (i) The position of the intermediate image, (ii) the focal length of the eye piece, that will place the final image at the near-point, (iii) the total magnification of the microscope and the height...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT