Question

​A string is 6 m long and vibrates with a fundamental frequency of 2000 Hz. If...

​A string is 6 m long and vibrates with a fundamental frequency of 2000 Hz. If you fret down 1/3 ​of the way what is the new fundamental frequency? ​

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a. If a violin string vibrates at 480 Hz as its fundamental frequency, what are the...
a. If a violin string vibrates at 480 Hz as its fundamental frequency, what are the frequencies of the first four harmonics? Enter your answers in ascending order separated by commas. b.The speed of waves on a string is 92 m/s . If the frequency of standing waves is 490 Hz , how far apart are two adjacent nodes? Express your answer to two significant figures and include the appropriate units. c. If two successive overtones of a vibrating string...
A string of a violin vibrates in its fundamental mode of one loop with frequency of...
A string of a violin vibrates in its fundamental mode of one loop with frequency of 100 Hz. What will be the frequency of the wave that will produce a three-loop pattern on the same string?
A cello string vibrates in its fundamental mode with a frequency of 159 1/s. The vibrating...
A cello string vibrates in its fundamental mode with a frequency of 159 1/s. The vibrating segment is 32.2 cm long and has a mass of 0.69 g. Find the tension in the string. Answer in units of N. Find the frequency of the string when it vibrates in eight segments. Answer in units of 1/s
#1 If the fundamental frequency of an 76 cm long guitar string is 460 Hz, what...
#1 If the fundamental frequency of an 76 cm long guitar string is 460 Hz, what is the speed of the traveling waves? #2: You have an organ pipe that resonates at frequencies of 800, 1120, and 1440 Hz but nothing between these. It may resonate at lower and higher frequencies as well. What is the fundamental frequency for this pipe?
A typical steel B-string in a guitar resonates in its fundamental frequency at 240 Hz. The...
A typical steel B-string in a guitar resonates in its fundamental frequency at 240 Hz. The length of the string is 0.600 m. What is the wave velocity in the string? The tension in the above string is 81.2 N. Calculate the mass of a 4 m long piece of the steel string.   What is the wavelength of the third harmonic of the guitar string described above?
A stretched wire vibrates in its fundamental mode at a frequency of 236 vibrations/s. What would...
A stretched wire vibrates in its fundamental mode at a frequency of 236 vibrations/s. What would be the fundamental frequency if the wire were half as long, with twice the diameter and 2.1 times the tension? Answer in units of Hz.
A mass m at the end of a spring vibrates with a frequency of 0.88 Hz...
A mass m at the end of a spring vibrates with a frequency of 0.88 Hz . When an additional 660 g mass is added to m, the frequency is 0.56 Hz . What is the value of m? Express your answer using two significant figures.
A 2-meter long wire vibrates with a frequency of 365 Hz when the tension is 500...
A 2-meter long wire vibrates with a frequency of 365 Hz when the tension is 500 N. What is the frequency if the tension on the wire is 200 N? [ Answer: frequency = ______ Hz; Round off answer and it must be a whole number]
A student uses a 2.00-m-long steel string with a diameter of 0.90 mm for a standing...
A student uses a 2.00-m-long steel string with a diameter of 0.90 mm for a standing wave experiment. The tension on the string is tweaked so that the second harmonic of this string vibrates at 29.0 Hz . (ρsteel=7.8⋅10^3 kg/m^3) If you wanted to increase the first harmonic frequency by 60 % , what would be the tension in the string?
a) Strings on a full-scale violin are 32 centimeters long. The third harmonic of the fourth...
a) Strings on a full-scale violin are 32 centimeters long. The third harmonic of the fourth string vibrates at a frequency of 1320 Hz. What is the wavelength of the vibration of the string in this third-harmonic mode? (Hint: draw a sketch) b) What is the fundamental frequency of this tone? Show your work c) What is the speed of a wave on this string? Show your work d) The violinist firmly places a finger on the string 1/3 of...