Question

a bolck of mass 40 kg is placed at the top of a slope of a...

a bolck of mass 40 kg is placed at the top of a slope of a rough surface. The slope is 10 m high and its length is 100m. When the block is pushed with the initial speed of 5.0 m/s downward along the slope, find the block's speed in m/s, at the bottom of the slope. Constant friction is 20N

Homework Answers

Answer #1

apply work energy theorem

Work done by the net force = change in mechanical energy

Net force = m*g*sin(theta) - f

f is the firctional force

theta is the angle of inclination
theta = asin(10/100) = asin(0.1) = 5.73 degrees

total energy at the top = m*g*h + 0.5*m*u^2 = (40*9.81*10) +(0.5*40*5*5) = 4424 J

total energy at the bottom = 0.5*m*v^2 = 0.5*40*v^2

then [m*g*sin(5.73) - 20]*100 = 20*v^2-4424


[40*9.81*sin(5.73) - 20 ]*100 + 4424 = 20*v^2

v = 17.8 m/s this is the required speed st the bottom of the bottom of the slope

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass 3.40 kg is placed against a horizontal spring of constant k =...
A block of mass 3.40 kg is placed against a horizontal spring of constant k = 725 N/m and pushed so the spring compresses by 0.0400 m. HINT (a) What is the elastic potential energy of the block-spring system (in J)? J (b) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s) after leaving the spring. m/s
A block of mass 2.80 kg is placed against a horizontal spring of constant k =...
A block of mass 2.80 kg is placed against a horizontal spring of constant k = 805 N/m and pushed so the spring compresses by 0.0800 m. A) What is the elastic potential energy of the block-spring system (in J)? __________ J B) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s) after leaving the spring. _______ M/S
An 8.5-kg block is pushed along a horizontal rough surface by a 40-N force inclined at...
An 8.5-kg block is pushed along a horizontal rough surface by a 40-N force inclined at 20° with the horizontal. The coefficient of friction between the surface and block is 0.35. If the block has an initial velocity of 3.6 m/s and the force does 200 J of work on the block, find: (a) The total distance moved by the block. (b) The final velocity of the block.
A 3.00 kg mass is pushed against a spring and released. If the spring constant of...
A 3.00 kg mass is pushed against a spring and released. If the spring constant of the spring is 7500 N/m and the spring is compressed 10.0 cm. (a) What is the energy stored in the compressed spring? (b) What is the maximum speed ?0 of the mass? (c) The mass then travels across a rough surface and then up a smooth ramp. The speed at the beginning of the ramp is ?1 = 4.00 m/s. What is the work...
A block of mass 0.630 kg is pushed against a horizontal spring of negligible mass until...
A block of mass 0.630 kg is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the block travels along a frictionless, horizontal surface to point circled A, the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The speed of the block at the bottom of the track is...
A block of mass 19.6 kg starts at rest at the top of a frictionless ramp...
A block of mass 19.6 kg starts at rest at the top of a frictionless ramp that makes an angle of 36.2 ^\circ ∘ below the horizontal. After it slides without friction down the entire 2.89 m length of the ramp, it begins to slide horizontally along a rough concrete surface with a coefficient of kinetic friction of \mu_kμ k = 0.503 until it slows to a complete stop. How far does the block slide horizontally along the concrete before...
A 47.75 kg crate slides down a 53.13* slope (inclined plane) that is 36.00 m in...
A 47.75 kg crate slides down a 53.13* slope (inclined plane) that is 36.00 m in length and has a kinetic friction coefficient of 0.444.   The create is given a downward speed of only 4.5 m/s as it starts down from the top of the slope. Applying the principle of the conservation of mechanical energy in the presence of dissipative forces, determine its final speed as it reaches the bottom of the slope.
A mass of 40 kg of ice slides down a frictionless slope of 30°. At this...
A mass of 40 kg of ice slides down a frictionless slope of 30°. At this time, one person pushed the ice down at a constant speed by applying force parallel to the slope. While the ice is exercising a distance of 2 m along a slope, 1.how much work is done on ice by humans? 2.How much work is done by gravity? 3.How much work is done by normal force? 4.How much work is done by total force acting...
Two blocks, each of mass m = 6.00 kg , are connected by a massless rope...
Two blocks, each of mass m = 6.00 kg , are connected by a massless rope and start sliding down a slope of incline θ = 36.0 ∘ at t=0.000 s. The slope's top portion is a rough surface whose coefficient of kinetic friction is μk = 0.300. At a distance d = 1.90 m from block A's initial position the slope becomes frictionless. What is the velocity of the blocks when block A reaches this frictional transition point? Assume...
A wooden block with mass 1.80 kg is placed against a compressed spring at the bottom...
A wooden block with mass 1.80 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 34.0 ? (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 6.00 m up the incline from A, the block is moving up the incline at a speed of 6.45 m/s and is no longer in contact with the spring. The coefficient of kinetic friction...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT