Question

The collision between a hammer and a nail can be considered to be approximately elastic. A.)Calculate...

The collision between a hammer and a nail can be considered to be approximately elastic.

A.)Calculate the kinetic energy acquired by a 9.7-g nail when it is struck by a 700-g hammer moving with an initial speed of 9.2 m/s.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The collision between a hammer and a nail can be considered to be approximately elastic. Part...
The collision between a hammer and a nail can be considered to be approximately elastic. Part A Calculate the kinetic energy acquired by a 12-g nail when it is struck by a 600-g hammer moving with an initial speed of 5.0 m/s . Express your answer using two significant figures. K =   J  
A nail driven into a board increases in temperature.If 64.0 % of the kinetic energy delivered...
A nail driven into a board increases in temperature.If 64.0 % of the kinetic energy delivered by a 1.80 kg hammer with a speed of 8.00 m/s is transformed into heat that flows into the nail and does not flow out, what is the increase in temperature of an 7.65 g aluminum nail after it is struck 10 times? (Celsius)
A 2.0 g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a...
A 2.0 g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting 1.0 g object. (a) Find the speed of each after the collision. 2.0 g particle m/s 1.0 g particle m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle m/s 1.0 g particle m/s (c) Find the final kinetic energy of the incident 2.0 g particle in the situations...
A 2.0 g particle moving at 5.6 m/s makes a perfectly elastic head-on collision with a...
A 2.0 g particle moving at 5.6 m/s makes a perfectly elastic head-on collision with a resting 1.0 g object. (a) Find the speed of each after the collision. 2.0 g particle m/s 1.0 g particle m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle m/s 1.0 g particle m/s (c) Find the final kinetic energy of the incident 2.0 g particle in the situations...
A 2.0-g particle moving at 7.0 m/s makes a perfectly elastic head-on collision with a resting...
A 2.0-g particle moving at 7.0 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object. (a) Find the speed of each particle after the collision. 2.0 g particle     m/s 1.0 g particle     m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle     m/s 10.0 g particle     m/s (c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in...
A 2.0-g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting...
A 2.0-g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object. (a) Find the speed of each particle after the collision. 2.0 g particle     m/s 1.0 g particle     m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle     m/s 10.0 g particle     m/s (c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in...
A 0.850 kg hammer is moving horizontally at 9.00 m/s when it strikes a nail and...
A 0.850 kg hammer is moving horizontally at 9.00 m/s when it strikes a nail and comes to rest after driving it 1.00 cm into a board. (a) Calculate the duration of the impact. (b) What was the average force exerted on the nail? N (downward)
You are trying to determine the velocity of an asteriod using an elastic collision. You fire...
You are trying to determine the velocity of an asteriod using an elastic collision. You fire a 1 kg projectile to the right moving with speed 1 m/s toward on 100 kg mass that is moving left with some unknown speed. After an elastic collision, we measure that the launced projectile bounces back toward you with a speed of 40.58 m/s. Find the initial speed of the larger 100 kg mass
In a perfectly elastic collision, a 400-g ball moving toward the east at 3.7 m/s suddenly...
In a perfectly elastic collision, a 400-g ball moving toward the east at 3.7 m/s suddenly collides head-on with a 200 g ball sitting at rest. (a) Determine the velocity of the first ball just after the collision. (b) Determine the velocity of the second ball just after the collision. (c) Is kinetic energy conserved in this collision? How do you know? please show work on paper
A 2.84 kg block, traveling at a speed of 12.4 m/s, undergoes a perfectly inelastic collision...
A 2.84 kg block, traveling at a speed of 12.4 m/s, undergoes a perfectly inelastic collision with a 3.68 kg block which starts at rest. a) Find the final speed of each block. b) Calculate how much energy was lost in the collision (final kinetic energy minus initial kinetic energy). If you were unable to calculate the answer to part (a), assume the final velocity is 5.00 m/s. c) How much energy would have been lost if the collision were...