Question

A 1.3-kΩ resistor and 26.3-mH inductor are connected in series to a Vrms = 120 V...

A 1.3-kΩ resistor and 26.3-mH inductor are connected in series to a Vrms = 120 V AC power source oscillating at a frequency of f = 60 Hz. The voltage as a function of time is given by

V = V0cos(ωt),


where V0 is the amplitude, ω is the angular frequency.

Part (a) What is the amplitude of the source voltage, in volts?

Part (b) Enter an expression for the impedance of the circuit in terms of R, L, f, and π.

Part (c) Enter an expression for the tangent of the phase constant of the circuit in terms of R, L, f, and π.

Part (d) Assume the time dependence of the source voltage is given by V = V0cos377t, where the amplitude V0 is what you calculated in part (a) and the angular frequency is (2π)60 rad/s ≈ 377 rad/s. Select the correct expression for the current in the circuit.

Part (e) Find the current in the circuit, in amperes, at time t = 5.8 s.

Part (f) Find the voltage drop across the resistor, in volts, at time t = 5.8 s.

Part (g) Find the voltage drop across the inductor, in volts, at time t = 5.8 s.

Part (h) Find the average power, in watts, that is dissipated in the resistor.

Part (i) Find the average power, in watts, that is dissipated in the inductor.

Part (j) Find the average power, in watts, that is produced by the source.

Homework Answers

Answer #1

please post the last few questions separately and post the options of question (d)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source...
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source of amplitude 12 V and frequency 120 Hz. Part (h) With a source voltage of Vsource = V0 cos(2πft), what is the instantaneous voltage, in volts, across the capacitor at time t = 2.25 s? Part (i) What is the amplitude of the voltage drop across the inductor, in volts? Part (j) With a source voltage of Vsource = V0cos(2πft), what is the instantaneous...
A 1.5-kΩ resistor and 30-mH inductor are connected in series, as shown below, across a 120-V...
A 1.5-kΩ resistor and 30-mH inductor are connected in series, as shown below, across a 120-V (rms) ac power source oscillating at 60-Hz frequency. (a) Find the current in the circuit. (b) Find the voltage drops across the resistor and inductor. (c) Find the impedance of the circuit. (d) Find the power dissipated in the resistor. (e) Find the power dissipated in the inductor. (f) Find the power produced by the source.
A series ac circuit contains a 350-Ω resistor, a 11.0-mH inductor, a 3.70-μF capacitor, and an...
A series ac circuit contains a 350-Ω resistor, a 11.0-mH inductor, a 3.70-μF capacitor, and an ac power source of voltage amplitude 45.0 V operating at an angular frequency of 360 rad/s . What is the power factor of this circuit? Find the average power delivered to the entire circuit. What is the average power delivered to the resistor, to the capacitor, and to the inductor? Enter your answers numerically separated by commas.
A series RLC circuit contains a 210 Ω resistor, a 17.0 mH inductor, a 2.70 μF...
A series RLC circuit contains a 210 Ω resistor, a 17.0 mH inductor, a 2.70 μF capacitor, and an AC voltage source of amplitude 45.0 V operating at an angular frequency of 360 rad/s. (a) What is the power factor of this circuit? (b) Find the average power delivered to the entire circuit by the source, in W (c) What is the average power delivered to the capacitor, in W?
A resistor with R = 310 Ω and an inductor are connected in series across an...
A resistor with R = 310 Ω and an inductor are connected in series across an ac source that has voltage amplitude 490 V . The rate at which electrical energy is dissipated in the resistor is 286 W . What is the impedance Z of the circuit? What is the amplitude of the voltage across the inductor? What is the power factor?
You have a 170-Ω resistor and a 0.390-H inductor. Suppose you take the resistor and inductor...
You have a 170-Ω resistor and a 0.390-H inductor. Suppose you take the resistor and inductor and make a series circuit with a voltage source that has a voltage amplitude of 35.0 V and an angular frequency of 220 rad/s . What is the impedance of the circuit? What is the current amplitude? What is the voltage amplitude across the resistor? What is the voltage amplitudes across the inductor? What is the phase angle ϕ of the source voltage with...
You have a resistor of resistance 250 Ω , an inductor of inductance 0.370 H ,...
You have a resistor of resistance 250 Ω , an inductor of inductance 0.370 H , a capacitor of capacitance 5.90 μF and a voltage source that has a voltage amplitude of 26.0 V and an angular frequency of 280 rad/s . The resistor, inductor, capacitor, and voltage source are connected to form an L-R-C series circuit. Part A What is the impedance of the circuit? Part B What is the current amplitude? Part C What is the phase angle...
A V = 84-V source is connected in series with an R = 1.1-kΩ resistor and...
A V = 84-V source is connected in series with an R = 1.1-kΩ resistor and an L = 34-H inductor and the current is allowed to reach maximum. At time t = 0 a switch is thrown that disconnects the voltage source, but leaves the resistor and the inductor connected in their own circuit. a) How much time, in milliseconds, is needed for the current in the circuit to drop to 9 % of its value at t =...
You have a resistor of resistance 170 Ω , an inductor of inductance 0.420 H ,...
You have a resistor of resistance 170 Ω , an inductor of inductance 0.420 H , a capacitor of capacitance 6.20 μF and a voltage source that has a voltage amplitude of 26.0 V and an angular frequency of 280 rad/s . The resistor, inductor, capacitor, and voltage source are connected to form an L-R-Cseries circuit. a.) What is the impedance of the circuit? b.)What is the current amplitude? c.)What is the phase angle of the source voltage with respect...
A 218 ? resistor, a 0.825 H inductor, and a 5.50 ?F capacitor are connected in...
A 218 ? resistor, a 0.825 H inductor, and a 5.50 ?F capacitor are connected in series across a voltage source that has voltage amplitude 29.5 V and an angular frequency of 230 rad/s . B....What is vR at t= 21.5 ms ? C....What is vL at t= 21.5 ms ? D.What is vC at t= 21.5 ms ? F....What is VR? G....What is VC? H....What is VL?