Question

Hot water enters a counter-flow double-pipe heat exchanger at 180F with a velocity of 5 ft/s....

Hot water enters a counter-flow double-pipe heat exchanger at 180F with a velocity of 5 ft/s. Cold water at 80F flows at 3 ft/s in the outer section of the exchanger. The diameter of the inner pipe is 1 inch, the pipe wall thickness is 1/8", and the outer pipe diameter is 2 inches. The overall heat transfer coefficient times area per unit length UA/L = 150 Btu/hr-ft-F. If the exchanger is 16 feet long, what is the exit temperature of the hot water (F)? Use the ε-NTU method. For convenience, use properties evaluated at the entering temperatures of the streams.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A counter current double pipe heat exchanger is used to boil but not superheat water at...
A counter current double pipe heat exchanger is used to boil but not superheat water at 100 DegreeC at rate of about 0.1 kg/s. This is achieved by flowing hot oil at 400 DegreeC through the inner pipe at a rate of 5 kg/s. Latent heat of water: 2265 kJ/kg Heat capacity of water: 4180 J/kgK Heat capacity of the oil: 1800 J/kgK What is the temperature of he hot oil leaving the heat exchanger? What is the overall heat...
Cold water enters a counter flow heat exchanger at 20ºC at a rate of 10 kg/s,...
Cold water enters a counter flow heat exchanger at 20ºC at a rate of 10 kg/s, where it is heated by a hot water stream that enters the heat exchanger at 80ºC at a rate of 2 kg/s. Assuming the specific heat of water to remain constant at Cp=4.18 kJ/(kg.ºC), determine the maximum heat transfer rate and the outlet temperatures of the cold and the hot water streams.
A thin-walled double pipe counter flow heat exchanger is to be used to cool oil (cp...
A thin-walled double pipe counter flow heat exchanger is to be used to cool oil (cp = 2200 j/kg*K) from 150 ℃ to 30 ℃ at a rate of 2.1 kg/s by water (cp= 4180 J/kg*K) that enters at 20 ℃ at a rate of 1.2 kg/s. The diameter of the tube is 2.5 cm, and its length is 10 m. Using Excel (a) Determine the overall heat transfer coefficient of this heat exchanger. (b) Investigate the effects of oil...
Problem 8.24 Water is used to cool ethylene glycol in a 60-ft-long double pipe heat exchanger...
Problem 8.24 Water is used to cool ethylene glycol in a 60-ft-long double pipe heat exchanger made of 4-std and 2-std (both type M) copper tubing. The water inlet temperature is 60°F and the ethylene glycol inlet temperature is 180°F. The flow rate of the ethylene glycol is 20 lbm/s, while that for the water is 30 lbm/s. Calculate the expected outlet temperature of the ethylene glycol and determine the pressure drop expected for both streams. Assume counterflow, and place...
A heat recovery unit in a factory uses a shell-in-tube counter flow type unit to recover...
A heat recovery unit in a factory uses a shell-in-tube counter flow type unit to recover heat from a flow of hot fluid to preheat water for the factory. The hot fluid enters at 88°C and a flow rate of 25 kg/minute, and exits at 55°C. The cold water will enter the heat exchanger at 15°C and exit at 55°C. Take cHot-fluid = 3000 J/kg.K, cwater = 4200 J/kg.K. PART (b) An air to water heat exchanger with an effectiveness...
Water is supplied to a business in a 1.063-inch diameter copper pipe at 5 ft/s. Friction...
Water is supplied to a business in a 1.063-inch diameter copper pipe at 5 ft/s. Friction factor f = 0.025 for this pipe. a. Find the pressure drop over 100 ft of this pipe. [Answer: 5 psia, which is significant considering that the water supply is usually about 50 psig. Bends in the pipe and other pipe fittings reduce the water pressure even more, of course.] b. What is the volumetric flow rate of water gpm?
Water at a flow rate of 60 kg/s enters the shell-side of a baffled shell-and-tube heat...
Water at a flow rate of 60 kg/s enters the shell-side of a baffled shell-and-tube heat exchanger at 35 °C and leaves at 25 °C. The heat will be transferred to 150 kg/s of raw water coming from a supply at 15 °C. You are requested to design the heat exchanger for this purpose. A single shell and single tube pass is preferable. The tube diameter is ¾ in. (19 mm outer diameter with 16 mm inner diameter) and tubes...
A pump is used to carry water (T =60 oF and ν = 1.217×10-5 ft2/s) from...
A pump is used to carry water (T =60 oF and ν = 1.217×10-5 ft2/s) from a large tank (elevation of surface = 30 ft and at atmospheric pressure) through a pipe to the exit (elevation 60 ft) at a rate Q = 1.5 cfs as shown below. The pipe is made of cast iron (ε = 0.00085 ft). The pipe segment before the pump has length L = 500 ft (three horizontal sections of 160 ft each and two...
Hot oil at a rate of 5 kg/s (Cpm= 2 kJ/kg. K) enters in a 2-4...
Hot oil at a rate of 5 kg/s (Cpm= 2 kJ/kg. K) enters in a 2-4 shell and tube heat exchanger at 366 K and is cooled to 344 K by 2 kg/s of water (Cpm= 4 kJ/kg. K) entering at 283 K. The overall heat transfer coefficient U0 is 340 W/m . Calculate the area requied. If the length of each tube is 1.2 m, and the diameter of each tube is 0.1 m, calculate the number of tubes?
A shell and-tube heat exchanger is required for the following service: Hot stream Cold Stream Aromatic...
A shell and-tube heat exchanger is required for the following service: Hot stream Cold Stream Aromatic Stream Cooling Water inlet Temperature (oC) 85 20 outlet Temperature (oC) 40 35 Mass Flowrate x heat Capacity (kW/oC) 85.2 Hot Stream cold stream (Cooling water) Heat Capacity (J/kg K) 2840 4193 Density (kg/m3) 750 999 Viscosity (cP) 0.34 1.016 Thermal conductivity (W/m.K) 0.19 0.594 Fouling Factor (m2.oC/W 0.00018 0.000176 ? The cooling water is allocated to the tube-side of the exchanger. ? It...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT