Question

Suppose a 64 lb weight stretches a spring 6 inches in equilibrium and a dashpot provides...

Suppose a 64 lb weight stretches a spring 6 inches in equilibrium and a dashpot provides a damping force of c = 4 lb-sec/ft . Find the displacement of the object if the initial conditions are:

y(0) = 1.5ft. ,and y 0 (0) = −3ft/sec.

Please show your work step by step, thank you.

Homework Answers

Answer #1

please check all the calculations once

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a mass weighing 64 lb stretches a spring 2 ft. If the weight is released...
Suppose a mass weighing 64 lb stretches a spring 2 ft. If the weight is released from rest from 2 ft below the equilibrium position, find the equation of motion x(t) (using Laplace transforms) if an impressed force f(t) = 2 sint acts on the system for 0≤t≤2πand is then removed. Ignore any damping forces.
A 64 lb weight is attached to a spring causing it to stretch 3 inches and...
A 64 lb weight is attached to a spring causing it to stretch 3 inches and then comes to rest in the equilibrium position. The damping force is equal to 3 times the instantaneous velocity. Starting at t = 0 an external force of 3cos(12t) applied to the system. Find the steady state solution for the system
If a mass weighing 40 lbs stretches a spring 6 inches what is the spring constant?...
If a mass weighing 40 lbs stretches a spring 6 inches what is the spring constant? If the mass has a velocity of 4 ft/sec and this results in a viscous resistance of 68 lbs what is the damping coefficient? Assume 32lb=1 slug32lb=1 slug   1. suppose the object is displaced upward 8 inches from equilibrium and released. Create an ODE in terms of the object's displacement, u(t)u(t) , in feet after tt  seconds and its derivatives and solve for u(t)u(t) .
Determine C1 and C2 of the following damped motion A 4-lb weight stretches a spring 4...
Determine C1 and C2 of the following damped motion A 4-lb weight stretches a spring 4 ft. Initially the weight released from 2ft above equilibrium position with downward velocity 2 ft/sec. Find the equation of motion x(t), provided that the subsequent motion takes place in a medium that offers a damping force numerically equal to (1/2) times the instantaneous velocity
A 6lb wieght can stretch a spring 6 inches. Suppose the weight is pulled 4 inches...
A 6lb wieght can stretch a spring 6 inches. Suppose the weight is pulled 4 inches past the equilibrium point and released from rest. The initial equation is y(t)=1/3*cos(8t)+0*sin(8t) Suppose that a damping force given in pounds numerically by 1.5 times the instantaneous velocity in feet per second acts on the 6lb weight. Find the position x of the weight as a funtion of time.
There is an object that weighs 8 pounds that stretches a spring 6 inches. The system...
There is an object that weighs 8 pounds that stretches a spring 6 inches. The system is inside a medium that transmits a force of 2ft-lb when the speed of the object is 8ft/s. We pull down the object 4 in and set in motion with an upward velocity of 2 ft/s. Question: a) Setup the initial value problem that describes the motion of the object b) Solve the differential equation
A mass weighting 8 lbs stretches a spring 2 inches. The mass is in a medium...
A mass weighting 8 lbs stretches a spring 2 inches. The mass is in a medium that exerts a viscous resistance of 3 lbs when the mass has a velocity of 6 ft/sec. Suppose the object is displaced an additional 7 inches and released. Find an equation for the object's displacement, u(t), in feet after t seconds. u(t) =
A coil spring is suspended from the ceiling, a 16-lb weight is attached to the end...
A coil spring is suspended from the ceiling, a 16-lb weight is attached to the end of it, and the weight then comes to rest in its equilibrium position. The mass is in a medium that exerts a viscous resistance of 8 lb when the mass has a velocity of 1 ft/s. It is then pulled down 12 in. below its equilibrium position and released with an initial velocity of 2 ft/sec, directed upward. (a)   Use the Laplace transform to determine...
1.   A 4 pound weight stretches a spring 6 inches. The mass is then released from...
1.   A 4 pound weight stretches a spring 6 inches. The mass is then released from an initial position of 4 feet below the equilibrium position with an initial upward velocity of 24ft/s.    (a)   What is the frequency of motion? (b)   Determine the first time the mass crosses the equilibrium position. Round to 3 decimals places. (c)   Determine the first time the mass attains its extreme displacement from the equilibrium position. Round to 3 decimal places.
A mass weighing 96 lb is attached to a spring hanging from the ceiling and comes...
A mass weighing 96 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At time t=​0, an external force of F(t) = 3cos(4t) lb is applied to the system. If the spring constant is 10 lb/ft and the damping constant is 3 lb-sec/ft, find the​ steady-state solution for the system. Use g=32 ft/sec^2