Question

A 2.60 kg block is initially at rest on a horizontal surface. A horizontal force ModifyingAbove...

A 2.60 kg block is initially at rest on a horizontal surface. A horizontal force ModifyingAbove Upper F With right-arrow of magnitude 6.59 N and a vertical force ModifyingAbove Upper P With right-arrow are then applied to the block (see the figure). The coefficients of friction for the block and surface are ?s = 0.4 and ?k = 0.25. Determine the magnitude of the frictional force acting on the block if the magnitude of ModifyingAbove Upper P With right-arrow is (a)8.00 N and (b)11.0 N. (The upward pull is insufficient to move the block vertically.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 6.53-kg block initially at rest is pulled to the right along a horizontal surface by...
A 6.53-kg block initially at rest is pulled to the right along a horizontal surface by a constant force of 125 N applied at an angle θ above the horizontal. The coefficient of kinetic friction between the block and the horizontal surface is 0.150. At what angle θ above the horizontal surface should the force be applied to achieve the largest possible speed after the block has moved 5.00 m to the right?
A 6.0-kg block initially at rest is pulled to the right along a horizontal surface with...
A 6.0-kg block initially at rest is pulled to the right along a horizontal surface with a force of 12 N. The force of kinetic friction is 3N. a. Draw a free-body diagram of the situation. b. Find the work done by the 12 N force on the block to move the block 3m? c. Find the work done by the force of friction on the block when the block was moved 3m? d. Use the work-energy principle to find...
A 16.3 kg block is dragged over a rough, horizontal surface by a constant force of...
A 16.3 kg block is dragged over a rough, horizontal surface by a constant force of 184 N acting at an angle of angle 34.9 ? above the horizontal. The block is displaced 44 m and the coefficient of kinetic friction is 0.131. 16.3 kg µ = 0.131 184 N 34.9 ? Find the work done by the 184 N force. The acceleration of gravity is 9.8 m/s 2 . Answer in units of J. 005 (part 2 of 5)...
In the figure, a slab of mass m1 = 40 kg rests on a frictionless floor,...
In the figure, a slab of mass m1 = 40 kg rests on a frictionless floor, and a block of mass m2 = 11 kg rests on top of the slab. Between block and slab, the coefficient of static friction is 0.60, and the coefficient of kinetic friction is 0.40. A horizontal force ModifyingAbove Upper F With right-arrow of magnitude 107 N begins to pull directly on the block, as shown. In unit-vector notation, what are the resulting accelerations of...
A 4.0-kg block initially at rest is pulled to the right along a horizontal surface by...
A 4.0-kg block initially at rest is pulled to the right along a horizontal surface by a constant horizontal force of 12 N. Find the speed of the block after it has moved 3.0 m if the surfaces in contact have a coefficient of kinetic friction of 0.17 _____. a. 1.8 m/s b. 3.5 m/s c. 2.8 m/s d. 5.3 m/s Suppose the force is applied at an angle. At what angle should the force be applied to achieve the...
A 4.82 kg block located on a horizontal frictionless floor is pulled by a cord that...
A 4.82 kg block located on a horizontal frictionless floor is pulled by a cord that exerts a force F=12.4N at an angle theta=25.0degrees above the horizontal, as shown. What is the magnitude of the acceleration of the block when the force is applied? What is the horizontal speed of the block 4.30 seconds after it starts moving? What is the magnitude of the normal force acting on the block when the force F is acting on it? If, instead,...
As shown in Figure 1, a block (mass: 2.4 kg) is initially at rest near the...
As shown in Figure 1, a block (mass: 2.4 kg) is initially at rest near the top of an inclined plane, oriented at a 25° angle above the horizontal. The coefficients of static and kinetic friction along the incline are 0.2 and 0.1, respectively. (a) Just after the block is released from rest, draw a free-body diagram for it. (Assume that the block is moving after being released from rest.) (b) Determine the magnitude of the normal force acting on...
20.0-kg block initially sits at rest on a rough horizontal floor. One end of a string...
20.0-kg block initially sits at rest on a rough horizontal floor. One end of a string is attached to the block. You pull on the other end of the string with a force of 40.0 N so that the string makes an angle of 30.0° with the horizontal. After pulling the block 3.00 m across the floor, it is traveling with a speed of 1.25 m/s. What is the magnitude of the force of kinetic friction exerted on the block...
A 2.5-kg object moves across a rough horizontal surface. A force (F = 6.0 N) acts...
A 2.5-kg object moves across a rough horizontal surface. A force (F = 6.0 N) acts on the object as shown. The magnitude of the object’s acceleration is 1.2 m/s2. What is the magnitude of the force of friction acting on the block? The angle for the diagram is 30 degrees.
A block of mass 2.00 kg is initially at rest at x=0 on a slippery horizontal...
A block of mass 2.00 kg is initially at rest at x=0 on a slippery horizontal surface for which there is no friction. Starting at time t=0, a horizontal force Fx(t)=β−αt is applied to the block, where α = 6.00 N/s and β = 4.00 N. What is the largest positive value of x reached by the block? How long does it take the block to reach this point, starting from t = 0. What is the magnitude of the...