Question

Consider a thin non conducting ring of radius a, which has a charge Q uniformly spread...

Consider a thin non conducting ring of radius a, which has a charge Q uniformly spread around it. Find an expression for the electric force vector on a point charge q placed at point P, which is located on the x axis of the ring at a distance of x from the center. Verbally explain your reasoning. Let x=6 cm and Q=6 microC. Calculate the magnitude (in N) and the direction of the elctric force

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3) A thin ring made of uniformly charged insulating material has total charge Q and radius...
3) A thin ring made of uniformly charged insulating material has total charge Q and radius R. The ring is positioned along the x-y plane of a 3d coordinate system such that the center of the ring is at the origin of the coordinate system. (a) Determine an expression for the potential at an arbitrary location along the z-axis in terms of Q, R, and z. (b) Use this expression to determine an expression for the magnitude of the electric...
Physics 207 Quiz 3 A)a ring-shaped thin wire of radius R carries a total charge Q...
Physics 207 Quiz 3 A)a ring-shaped thin wire of radius R carries a total charge Q uniformly distributed around it.find the electric field E at a point P that lies on the axis of he ring at a distance x from its center. B) According to your formula, how much is the field at the center of the ring C)How much is the field when x is much larger than R?
Total charge q2 is uniformly placed on a ring of radius R. The magnitude of the...
Total charge q2 is uniformly placed on a ring of radius R. The magnitude of the electric field at position z on the axis of the ring is given by ((kq2z)/(R^2+z^2)^(3/2)) A uniformly charged rod of total charge q1 and length L is now placed on the z axis. The nearest end of the rod is at distance L from the center of the ring, i.e. the rod extends from z = L to z = 2L (see figure on...
A charge is spread out uniformly over a small non-conducting sphere. The small sphere shares a...
A charge is spread out uniformly over a small non-conducting sphere. The small sphere shares a center with a larger spherical shell with an inner radius of 6 ?? and an outer radius of 12 ??. a) Using Gauss’ Law, what is the magnitude of the charge on the nonconducting sphere if the field from the sphere is measured to be 8200 ?/? when 0.5 ?? from the center? b) What is the surface charge density on the inside of...
A thin ring of radius R has a total charge Q distributed uniformly around it. Find...
A thin ring of radius R has a total charge Q distributed uniformly around it. Find the escaping velocity of an electron starting to move perpendicular to the centre of the ring from its centre.
A thin insulating rod of length L has a charge Q spread uniformly along it. Point...
A thin insulating rod of length L has a charge Q spread uniformly along it. Point P is at a distance R from the middle point of the rod. What is the magnitude of the electric field, E, at point P?
The electric field in a point on the central axis of a uniformly charged very thin...
The electric field in a point on the central axis of a uniformly charged very thin ring is given by the expression: E = (k*lambda*2pi*R)/((x^2 +R^2)^(3/2)) i cap where R is the radius of the ring, lambda is the linear charge density, and x is the distance of the point on the central axis to the center of the ring. Use this expression (do not derive it!) to calculate the field in a point inside a thin shell with uniform...
A total charge Q is uniformly distributed, with surface charge density, over a very thin disk...
A total charge Q is uniformly distributed, with surface charge density, over a very thin disk of radius R. The electric field at a distance d along the disk axis is given by E where n is a normal unit vector perpendicular to the disk. What is the best approximation for the electric field magnitude E at large distances from the disk?
A thin rod 39.2 cm long is charged uniformly with a positive charge density of 46.0...
A thin rod 39.2 cm long is charged uniformly with a positive charge density of 46.0 ?C/m. The rod is placed along the y-axis and is centered at the origin. A charge of +43.0 ?C is placed 51.2 cm from the midpoint of the rod on the positive x-axis. Calculate the electric field at a point on the x-axis, which is halfway between the point charge and the center of the rod. (Express your answer in terms of the unit...
A thin dielectric disk with radius a has a total charge +Q distributed uniformly over its...
A thin dielectric disk with radius a has a total charge +Q distributed uniformly over its surface (Figure 1). It rotates n times per second about an axis perpendicular to the surface of the disk and passing through its center. Find the magnetic field at the center of the disk. Find the current of the rotating ring. Express your answer in terms of some or all of the variables Q, a, r, dr, n, and the constant π
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT