Question

There is a uniform electric flux perpendicular to a circular region of radius R = 2.2...

There is a uniform electric flux perpendicular to a circular region of radius R = 2.2 cm. The electric flux is only contained within the circular region, and the total value can be expressed by the following function: ΦE = 5.3t, where ΦE is in V⋅m when t is in seconds. At a radial distance of 4.0 cm from the center of the circle, what is the magnitude of the induced magnetic field? Express your answer in fT (femtoteslas). Femto- is 10-15.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) There is a uniform electric flux perpendicular to a circular region of radius R =...
a) There is a uniform electric flux perpendicular to a circular region of radius R = 2.8 cm. The electric flux is only contained within the circular region, and the total value can be expressed by the following function: ΦE = 6.3t, where ΦE is in V⋅m when t is in seconds. At a radial distance of 4.9 cm from the center of the circle, what is the magnitude of the induced magnetic field? Express your answer in fT (femtoteslas)....
The figure shows a circular region of radius R = 4.17 cm in which an electric...
The figure shows a circular region of radius R = 4.17 cm in which an electric flux is directed out of the plane of the page. The flux encircled by a concentric circle of radius r is given by E,enc = (0.600 V·m/s)(r/R)t, where r ≤ R and t is in seconds. What is the magnitude of the induced magnetic field at radial distance 2.17 cm? 1.325*10^17 T is wrong
1)in the figure below and electric field is directed out of the page within a circular...
1)in the figure below and electric field is directed out of the page within a circular region of radius R=2.75cm. the field magnitude is E=(0.410 v/m*s)(1-r/R)t where the t is in seconds and the r is the radial distance a) what is the magnitude of the induced magnetic filed at a radial distance of 2cm? b)what is the magnitude of the induced magnetic filed at a radial distance of 5cm?
Suppose that you have a circular magnetic field ‘B’ of radius R = 9.0 cm, pointing...
Suppose that you have a circular magnetic field ‘B’ of radius R = 9.0 cm, pointing inside the page and if this field is increased at the rate dB/dt = 0.15 T/sec. calculate (a) the magnitude of induced electric field at a point within the magnetic field at a distance r =5.0 cm, from the center of the field and (b) the magnitude of the induced electric field at a point out side the magnetic field at a distance r...
Uniform displacement-current density. The figure shows a circular region of radius R = 3.70 cm in...
Uniform displacement-current density. The figure shows a circular region of radius R = 3.70 cm in which a displacement current is directed out of the page.The displacement current has a uniform density of magnitude Jd = 8.90 A/m2. What is the magnitude of the magnetic field due to the displacement current at radial distances (a) 1.40 cmand (b) 4.50 cm? (In nT)
1. A cylindrical region of space of radius R contains a uniform magnetic field B with...
1. A cylindrical region of space of radius R contains a uniform magnetic field B with direction into the page. If the magnitude B inside the cylinder changes in time and outside the cylinder it is zero, describe the induced electric field (magnitude and direction) for points inside the cylinder (r < R). Find the magnitude and direction of the induced electric field at r = 5.00 cm if the magnetic field changes at a constant rate from 0.500T to...
A two-turn circular wire loop of radius 0.737 m lies in a plane perpendicular to a...
A two-turn circular wire loop of radius 0.737 m lies in a plane perpendicular to a uniform magnetic field of magnitude 0.591 T. If the entire wire is reshaped from a twoturn circle to a one-turn circle in 0.116 s (while remaining in the same plane), what is the magnitude of the average induced emf E in the wire during this time? Use Faraday’s law in the form E = − ∆(N Φ) ∆t . Answer in units of V.
A five-turn circular wire coil of radius 0.425 m lies in a plane perpendicular to a...
A five-turn circular wire coil of radius 0.425 m lies in a plane perpendicular to a uniform magnetic field of magnitude 0.370 T. If the wire is reshaped from a five-turn circle to a three-turn circle in 0.101 s (while remaining in the same plane), what is the average induced emf in the wire during this time?
A circular area with a radius of 7.20 cm lies in the x-y plane. 1) What...
A circular area with a radius of 7.20 cm lies in the x-y plane. 1) What is the magnitude of the magnetic flux through this circle due to a uniform magnetic field BBB = 0.213 TT that points in the +z direction? 2) What is the magnitude of the magnetic flux through this circle due to a uniform magnetic field BBB = 0.213 TT that points at an angle of 53.7 ∘∘ from the +z direction? 3) What is the...
A circular coil of 312 winds of wire (radius = 7.0 cm, resistance = 7.4 Ω)...
A circular coil of 312 winds of wire (radius = 7.0 cm, resistance = 7.4 Ω) is placed in a uniform magnetic field that is perpendicular to the plane of the loop. The magnitude of the field changes with time according to ? = 90sin(7?) mT, where ? is measured in seconds. Determine the magnitude of the current induced in the loop at ?=?/7 s.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT