Question

Blue light (λ = 450 nm) is used in a double slit experiment. The light passes...

Blue light (λ = 450 nm) is used in a double slit experiment. The light passes through
a diffraction grating with 1250 lines per centimeter, and the light is projected onto a
screen, which is 1.75 m from the slits. What is the distance from the central bright spot
to the third order maximum? What is the distance from the central bright spot to the
second order minimum?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Blue light (λ = 450 nm) is used in a double slit experiment with the slits...
Blue light (λ = 450 nm) is used in a double slit experiment with the slits separated by d = 2.10 × 10^-4 m. The distance between the third order bright fringe and the central bright fringe is 1.93 × 10^-2 m. (a) (3 pts.) Determine the distance between the double slit and the screen. (b) (3 pts.) Calculate the width of the central bright fringe, i.e. the separation of the two zeroth order dark fringes. (c) (3 pts.) The...
You shine blue light (400 nm) and red light (700 nm) onto a Young’s double slit...
You shine blue light (400 nm) and red light (700 nm) onto a Young’s double slit apparatus with a slit separation distance of 6.00 μm. In order, what are the colors of the first five bright fringes from the central bright spot?
A Young’s double-slit apparatus is illuminated with 669 nm light and the screen is positioned 2.2...
A Young’s double-slit apparatus is illuminated with 669 nm light and the screen is positioned 2.2 m from the double slits. If the spacing between the two slits is 0.33 mm … Part a) What is the angle from the center line (the line from the center of the two slits to the central bright spot) to the second order bright spot? Part b) What is the distance from the zeroth order bright fringe and on the screen to the...
a) A double slit experiment is with 450 nm light and two narrow slits which are...
a) A double slit experiment is with 450 nm light and two narrow slits which are 0.5 mm apart. At what angle to the straight through beam will be one observe: i. the third order bright fringe. ii. the second minimum from the central maximum. b) By drawing appropriate diagrams, show the differences between intensity or pattern for double slits intereference and single slit diffration
It is found that when blue light, λ = 470 nm, passes through a diffraction grating...
It is found that when blue light, λ = 470 nm, passes through a diffraction grating with a slit separation d, the diffraction pattern has a third order maximum at an angle θ = 44.8o. At what angle will red light, λ = 660 nm, have it's second order maximum when passed through the same diffraction grating. A. 29.4o B. 39.7o C. 41.3o D. 31.6o
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an...
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an interference pattern on the screen at a distance L from the slits. What statement is true for the resulting interference pattern if the frequency of the light increases? The distance between maxima increases. Not enough information given. The distance between maxima stays the same. The distance between maxima decreases.
Light with a wavelength of 633 nm passes through a slit 6.38 ?m wide and falls...
Light with a wavelength of 633 nm passes through a slit 6.38 ?m wide and falls on a screen 1.60 m away. Find the distance on the screen from the central bright fringe to the third dark fringe above it. ___ cm Monochromatic light passes through two slits separated by a distance of 0.0332 mm. If the angle to the third maximum above the central fringe is 3.21 degrees, what is the wavelength of the light? __ nm
1. A double slit apparatus is held 1.2 m from a screen. Red light (λ =...
1. A double slit apparatus is held 1.2 m from a screen. Red light (λ = 600.0nm) is sent through the double slit and the interference pattern on the screen shows a distance of 12.5cm between the central fringe and tenth order bright fringe. What is the separation of the slits?
Consider a source of light with wavelength λ = 490 nm that shines on two identical...
Consider a source of light with wavelength λ = 490 nm that shines on two identical narrow slits. The slits are separated by a distance a = 30 μm. An interference pattern is observed on a screen located a distance L away from the slits. On the screen, the location of the second dark spot to the left of the central bright spot is found to be y = 1.2 cm from the central bright spot. Let this particular position...
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light...
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light of wavelength λ= 460 nm  falls on the slits from a distant source. The distance between adjacent bright fringes is 6.2 mm. A) Find the distance between the two slits B) Determine the distance to the 6th order dark fringe from the central fringe
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT