Question

In photoelectric effect, light photon is allowed to fall on a metal surface and a photoelectron...

In photoelectric effect, light photon is allowed to fall on a metal surface and a photoelectron is ejected with kinetic energy 2.6 eV. If the threshold frequency f0 = 2 x 10^14

Hz then calculate the frequency and energy of incident photon.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus....
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21 V was obtained. What is the threshold frequency of the metal? (format of a.b x 10cdHz) b) Light with a frequency of 5.00 x 1014 Hz illuminates a photoelectric surface that has a work function of 2.10 x 10-19 J. What is the maximum kinetic energy of the emitted photoelectrons? (format of a.bc x 10-de J ) c) Light...
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the...
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the threshold frequency of this surface? (format of a.bc x 10de Hz) b) What is the stopping voltage of an electron that has 5.40 x 10-19 J of kinetic energy? (3 digit answer) c) A photoelectric surface requires a light of maximum wavelength of 675 nm to cause electron emission. What is the work function (in eV) of this surface? (3 digit answer) d) A...
a) In a particular photoelectric effect experiment, photons with an energy of 5.10 eV are incident...
a) In a particular photoelectric effect experiment, photons with an energy of 5.10 eV are incident on a metal surface, producing photoelectrons with a maximum kinetic energy of 3.20 eV. Calculate the work function of the metal. _______ eV b) In a particular photoelectric effect experiment, photons with an energy of 5.10 eV are incident on a metal surface, producing photoelectrons with a maximum kinetic energy of 3.20 eV. The photon energy is then adjusted to 6.40 eV. Calculate the...
A) Within a photoelectric effect experiment, light shines on the surface of a metal plate and...
A) Within a photoelectric effect experiment, light shines on the surface of a metal plate and the stopping voltage is measured. a) If the light intensity is decreased, what happens to the stopping voltage? decreases increases     stays the same not enough information b) If the light intensity is decreased, what happens to the number of electrons emitted? decreases increases     stays the same not enough information c) If the light wavelength is decreased, what happens to the KE of the emitted...
5. The light of frequency 8.9 x 10^14 Hz falls on a photoelectric surface. When the...
5. The light of frequency 8.9 x 10^14 Hz falls on a photoelectric surface. When the retarding potential of 0.85 V is applied, the maximum speed with which an electron reaches the collector plate is 4.9 x 10^5 m/s. Find: a) the maximum kinetic energy( in joules) of an electron as it leaves the photoelectrode b) the work function (in eV) of the photoelectrode c) the threshold frequency (in Hz) of the photoelectrode
a) A photoelectric surface has a work function of 2.75 eV. What is the minimum frequency...
a) A photoelectric surface has a work function of 2.75 eV. What is the minimum frequency of light that will cause photoelectron emission from this surface ? answer in the format of a.bc x 10de Hz b) A photoelectric cell is illuminated with white light (wavelengths from 400 nm to 700 nm). What is the maximum kinetic energy (in eV) of the electrons emitted by this surface if its work function is 2.30 eV ? 4 digit answer
a) A photon with a wavelength of 3.00x10-7 m strikes an electron at rest. The scattered...
a) A photon with a wavelength of 3.00x10-7 m strikes an electron at rest. The scattered photon has a wavelength of 4.00x10-7 m. Calculate the KE of the electron. b) Light with a wavelength of 425 nm falls on a photoelectric surface that has a work function of 2.00 eV. What is the maximum speed of the ejected electron? c) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21...
A) You are setting up a photoelectric effect experiment with an unknown metal surface. Which of...
A) You are setting up a photoelectric effect experiment with an unknown metal surface. Which of the following wavelengths of light is most likely to cause electrons to be ejected from the surface? 700 nm they are all equally likely to work 500 nm 300 nm 900 nm B) Suppose you try the experiment with the light you chose in the previous question, and you get ejected electrons with a maximum kinetic energy of 2.5 eV. What will happen if...
While studying the photoelectric effect, a chemist finds that light with the frequency of 5.6 x...
While studying the photoelectric effect, a chemist finds that light with the frequency of 5.6 x 10(14) Hz is insufficient to eject electrons from a metal surface. Which of the following might the chemist reasonably try if the goal is to eject electrons? a. using light with frequency of 4.6 x 10(14) Hz b. using light with frequency of 6.6 x 10(14) Hz c. increasing the amplitude of the radiant light d. decreasing the amplitude of the radiant light What...
Consider a beam of light with a wavelength λ = 403-nm incident onto a metal surface,...
Consider a beam of light with a wavelength λ = 403-nm incident onto a metal surface, which can be Li, Be or Hg. The work functions of these metals are 2.30-eV, 3.90-eV and 4.50-eV respectively. For the metal that exhibits the photoelectric effect find the maximum kinetic energy of the photoelectrons.