Question

A particle is confined in a one-dimensional potential that is proportional to the absolute value of...

A particle is confined in a one-dimensional potential that is proportional

to the absolute value of ?, where ?(?) = ? |?|, and ? is a real, positive constant. Use the

variational method with the trial wave function ?(?) = ? ?−??2, where ? is a normalization

constant and ? is a real, positive parameter to estimate the ground-state energy of this system. Note that this potential is an even function.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle is confined to the one-dimensional infinite potential well of the figure. If the particle...
A particle is confined to the one-dimensional infinite potential well of the figure. If the particle is in its ground state, what is the probability of detection between x = 0.20L and x = 0.65L?
A particle is confined to the one-dimensional infinite potential well of width L. If the particle...
A particle is confined to the one-dimensional infinite potential well of width L. If the particle is in the n=2 state, what is its probability of detection between a) x=0, and x=L/4; b) x=L/4, and x=3L/4; c) x=3L/4, and x=L? Hint: You can double check your answer if you calculate the total probability of the particle being trapped in the well. Please answer as soon as possible.
If an electron is confined to one-dimensional motion between two infinite potential walls which are separated...
If an electron is confined to one-dimensional motion between two infinite potential walls which are separated by a distance equal to Bohr radius, calculate energies of the three lowest states of motion.Calculate numerical value of ground state energy and compare it with hydrogen atom ground state energy.
If an electron is confined to one-dimensional motion between two infinite potential walls which are separated...
If an electron is confined to one-dimensional motion between two infinite potential walls which are separated by a distance equal to the Bohr radius, calculate the energies of the three lowest states of motion. Calculate numerical value of ground state energy and compare it with hydrogen atom ground state energy.
The wave function for a particle confined to a one-dimensional box located between x = 0...
The wave function for a particle confined to a one-dimensional box located between x = 0 and x = L is given by Psi(x) = A sin (n(pi)x/L) + B cos (n(pi)x/L) . The constants A and B are determined to be
Eight electrons are confined to a two-dimensional infinite potential well with widths L_X = L y...
Eight electrons are confined to a two-dimensional infinite potential well with widths L_X = L y =L. Assume that the electrons do not electrically interact with one another. Considering electron spin and degeneracies of some energy levels, what is the total energy of the eight-electron system in its ground state, as a multiple of h^2/(8mL^2 )?
The ground state of a particle is given by the time‐dependent wave function Ψ0(x, t) =...
The ground state of a particle is given by the time‐dependent wave function Ψ0(x, t) = Aeαx^2+iβt​​​​​​ with an energy eigenvalue of E0 = ħ2α/m a. Determine the potential in which this particle exists. Does this potential resemble any that you have seen before? b. Determine the normalization constant A for this wave function. c. Determine the expectation values of x, x2, p, and p2. d. Check the uncertainty principle Δx and Δp. Is their product consistent with the uncertainty...
Consider a system of three non-interacting particles confined by a one-dimensional harmonic oscillator potential and in...
Consider a system of three non-interacting particles confined by a one-dimensional harmonic oscillator potential and in thermal equilibrium with a total energy of 7/2 ħw. (a) what are the possible occupation numbers for this system if the particles are distinquishable. (b) what is the most probable energy for a distinquishable picked at random from this system.
1 - Write the one dimensional, time-independent Schrödinger Wave Equation (SWE). Using the appropriate potential energy...
1 - Write the one dimensional, time-independent Schrödinger Wave Equation (SWE). Using the appropriate potential energy functions for the following systems, write the complete time independent SWE for: (a) a particle confined to a one-dimensional infinite square well, (b) a one-dimensional harmonic oscillator, (c) a particle incident on a step potential, and (d) a particle incident on a barrier potential of finite width. 2 - Find the normalized wavefunctions and energies for the systems in 1(a). Use these wavefunctions to...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well is 4.0 eV. If the width of the well is doubled, what is its lowest energy? b) Find the distance of closest approach of a 16.0-Mev alpha particle incident on a gold foil. c) The transition from the first excited state to the ground state in potassium results in the emission of a photon with  = 310 nm. If the potassium vapor is...