Question

* i need part E , F, G , H You attach a 150 g mass...

* i need part E , F, G , H

You attach a 150 g mass on a spring hung vertically. a. If the spring initially stretches 16 cm w...

You attach a 150 g mass on a spring hung vertically.

a. If the spring initially stretches 16 cm when you hang the mass on it, what is the spring constant?

b. How long will one oscillation take?

The spring is now oriented horizontally and attached to a glider on a frictionless airtrack. The glider also has mass of 150 g. You want to observe the oscillations of this horizontal springmass system in the lab with a motion detector. You stretch the spring so that the mass is 5.0 cm to the right of its equilibrium position and release it. You then push the start on the motion detector, but the delay is such that the mass is now 1.0 cm to the left of the equilibrium position and moving to the left at time t=0.0 s on the detector output. For the next part, use clearly labeled, accurate, numerical axes.

c. Draw a position vs time graph of the mass for two cycles of the motion. Use the equilibrium position as x=0 and the first moment the detector records as t=0.

d. Draw a velocity vs. time graph of the mass for two cycles of the motion.

e. Draw an acceleration vs. time graph of the mass for two cycles of the motion.

f. On each graph, draw a circle around the points where the Kinetic Energy of the system is zero.

g. On each graph, draw a square around the points where the Elastic Potential Energy is zero.

h. If you replace the original glider with a 300 g glider, what will be the frequency of oscillations for this new mass/spring system?

Homework Answers

Answer #1

please thumb up

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You hang a 300 g mass on a spring. a. If the spring initially stretches 6.20...
You hang a 300 g mass on a spring. a. If the spring initially stretches 6.20 cm when you hang the mass on it, what is the spring constant? b. How long will one oscillation take? The spring is now oriented horizontally and attached to a glider on a frictionless air track. The glider also has a mass of 300g. You want to observe the oscillations of this spring-mass system in the lab with a motion detector. You stretch the...
A spring has an unstretched length of 10 cm. When a 150 g mass is added...
A spring has an unstretched length of 10 cm. When a 150 g mass is added the spring stretches to a total length of 15 cm, where the mass rests at equilibrium. What is the spring constant of the spring? Now the mass is pulled down by an additional 5 cm, so that the total length of the spring is 20 cm, and then released. What is the frequency and period of the subsequent oscillation? Draw a graph—including numbers on...
A spring has an unstretched length of 10 cm. When a 150 g mass is added...
A spring has an unstretched length of 10 cm. When a 150 g mass is added the spring stretches to a total length of 15 cm, where the mass rests at equilibrium. A. What is the spring constant of the spring? B. Now the mass is pulled down by an additional 5 cm, so that the total length of the spring is 20 cm, and then released. What is the frequency and period of the subsequent oscillation? C. Draw a...
A spring has an unstretched length of 10 cm. When a 150 g mass is added...
A spring has an unstretched length of 10 cm. When a 150 g mass is added the spring stretches to a total length of 15 cm, where the mass rests at equilibrium. A. What is the spring constant of the spring? B. Now the mass is pulled down by an additional 5 cm, so that the total length of the spring is 20 cm,and then released. What is the frequency and period of the subsequent oscillation? C. Draw a graph—including...
You hang a 175 g mass on a spring and start it oscillating with an amplitude...
You hang a 175 g mass on a spring and start it oscillating with an amplitude of 7 cm and a phase constant of −π/3. a. If the spring stretched 16 cm when you first hang the mass on it, how long will one oscillation take? b. Draw a position vs. time graph for two cycles of motion. Consider the position y = 0 to be the equilibrium position of the mass hanging on the spring. c. Will the velocity...
Please show step by step explanation including all units. Part 1 Mass and Spring System You...
Please show step by step explanation including all units. Part 1 Mass and Spring System You have a spring with an unknown spring constant. You attach a 10 gram mass and note that the spring stretches 1 cm. Then you remove that mass and attach a 20 gram mass and note that the spring stretches 2 cm. a) Find the slope of the line on F vs. x plot. That will be your spring constant. b) Then you pull the...
Finding the Spring Constant We can describe an oscillating mass in terms of its position, velocity,...
Finding the Spring Constant We can describe an oscillating mass in terms of its position, velocity, and acceleration as a function of time. We can also describe the system from an energy perspective. In this experiment, you will measure the position and velocity as a function of time for an oscillating mass and spring system, and from those data, plot the kinetic and potential energies of the system. Energy is present in three forms for the mass and spring system....
A mass of 100 g stretches a spring 1.568 cm. If the mass is set in...
A mass of 100 g stretches a spring 1.568 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 40 cms, and if there is no damping, determine the position u of the mass at any time t. Enclose arguments of functions in parentheses. For example, sin(2x).
A mass of 100 g stretches a spring 5 cm. If the mass is set in...
A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 10 cm/s, and if there is no damping, determine the position u of the mass at any time t. (Use g = 9.8 m/s2  for the acceleration due to gravity. Let u(t), measured positive downward, denote the displacement in meters of the mass from its equilibrium position at time t seconds.) u(t) = When does...
A mass of 50 g stretches a spring 1.568 cm. If the mass is set in...
A mass of 50 g stretches a spring 1.568 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 40 cm/s, and if there is no damping, determine the position u of the mass at any time t. Enclose arguments of functions in parentheses. For example, sin(2x). Assume g=9.8 ms2. Enter an exact answer. u(t)=?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT