Question

The state of a particle is completely described by its wave function Ψ(?,?) One-dimensional Schrodinger Equation--...

The state of a particle is completely described by its wave function Ψ(?,?) One-dimensional Schrodinger Equation-- answer the following questions:

2) Show that when U(x) = 0, and , is a solution to the one-?=2??/ℏΨ=?sin??dimensional Schrodinger equation.

3) Show that when U(x) = 0, and , is a solution to the one-?=2??/ℏΨ=?cos??dimensional Schrodinger equation.

4) Show that where A and B are constants is a solution to the Ψ=??+?Schrodinger equation when U(x) = 0, and when E = 0.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
7. A particle of mass m is described by the wave function ψ ( x) =...
7. A particle of mass m is described by the wave function ψ ( x) = 2a^(3/2)*xe^(−ax) when x ≥ 0 0 when x < 0 (a) (2 pts) Verify that the normalization constant is correct. (b) (3 pts) Sketch the wavefunction. Is it smooth at x = 0? (c) (2 pts) Find the particle’s most probable position. (d) (3 pts) What is the probability that the particle would be found in the region (0, 1/a)? 8. Refer to the...
The wave function of a particle in a one-dimensional box of length L is ψ(x) =...
The wave function of a particle in a one-dimensional box of length L is ψ(x) = A cos (πx/L). Find the probability function for ψ. Find P(0.1L < x < 0.3L) Suppose the length of the box was 0.6 nm and the particle was an electron. Find the uncertainty in the speed of the particle.
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
The wave function for a particle confined to a one-dimensional box located between x = 0...
The wave function for a particle confined to a one-dimensional box located between x = 0 and x = L is given by Psi(x) = A sin (n(pi)x/L) + B cos (n(pi)x/L) . The constants A and B are determined to be
a. Suppose that at time ta the state function of a one particle system is Ψ...
a. Suppose that at time ta the state function of a one particle system is Ψ = (2/πc2)3/4 e(exp [– (x2 + y2 + z2)/c2)] where c = 2 nm. Find the probability that a measurement of the particle’s position at ta will find the particle in the tiny cubic region with its center at x = 1.2 nm, y = -1.0 nm, z = 0 and with edges each of length 0.004 nm. Note that 1 nm = 10-9...
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a...
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a are real and positive constants. (a) Normalize it. (b) Find Ψ(x, t). (c) Find |Ψ(x, t)| 2 . Express your result in terms of the quantity w ≡ p a/ [1 + (2~at/m) 2 ]. At t = 0 plot |Ψ| 2 . Now plot |Ψ| 2 for some very large t. Qualitatively, what happens to |Ψ| 2 , as time goes on? (d)...
Consider the time-dependent ground state wave function Ψ(x,t ) for a quantum particle confined to an...
Consider the time-dependent ground state wave function Ψ(x,t ) for a quantum particle confined to an impenetrable box. (a) Show that the real and imaginary parts of Ψ(x,t) , separately, can be written as the sum of two travelling waves. (b) Show that the decompositions in part (a) are consistent with your understanding of the classical behavior of a particle in an impenetrable box.
Consider a one-dimensional real-space wave-function ψ(x) and let Pˆ denote the parity operator such that P...
Consider a one-dimensional real-space wave-function ψ(x) and let Pˆ denote the parity operator such that P ψˆ (x) = ψ(−x). a)Starting from the Rodrigues formula for Hermitian polynomials, Hn(y) = (−1)^n*e^y^2*(d^n/dy^n)e^-y^2 with n ∈ N, show that the eigenfunctions ψn(x) of the one-dimensional harmonic oscillator, with mass m and frequency ω, are also eigenfunctions of the parity operator. What are the eigenvalues? b)Define the operator Π = exp [  iπ (( 1 /2α) *pˆ 2 + α xˆ 2/ (h/2π)^2-1/2)] ,...
The wave function of a particle is ψ (x) = Ne (-∣x∣ / a) e (iP₀x...
The wave function of a particle is ψ (x) = Ne (-∣x∣ / a) e (iP₀x / ℏ). Where a and P0 are constant; (e≃2,71 will be taken). a) Find the normalization constant N? b) Calculate the probability that the particle is between [-a / 2, a / 2]? c) Find the mean momentum and the mean kinetic energy of the particle in the x direction.