Question

The electric potential in a region of space as a function of position x is given...

The electric potential in a region of space as a function of position x is given by the equation V(x) = αx2 + βx - γ, where α = 2V/m2, β = 7V/m, and γ = 15V. All nonelectrical forces are negligible.

  1. An electron starts at rest at x = 0 and travels to x = 20 m.

    1. Calculate the magnitude of the work done on the electron by the electric field during this process.

    2. Calculate the speed of the electron at x = 20 m.

  2. Derive an equation for the x-component of the electric field as a function of position x.

    1. On the axes below, sketch a graph of the acceleration of the electron a as a function of position x.

    2. On the axes below, sketch a graph of the kinetic energy of the electron K as a function of position x.

  3. At which of the following locations will an electron that is released from rest move in the negative x direction? Check all that apply.

    ____ x = -2 m ____x = +1 m ____x = +3 m

    Justify your answer.

  4. A charged object, generating its own electric field given by E(x) = 7 V/m, is introduced in the region. What is the potential difference from x = 0 m to x = 20 m caused by the combination of the original electrical potential and the electric field of the charged object?

Upload filesDelete File Mode

Upload files

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In some region of space the electric potential is V(x) = 2sin(2x) + 2x. What is...
In some region of space the electric potential is V(x) = 2sin(2x) + 2x. What is the electric field in this region? What would an electron do if placed at x = pi/3 m, move left, right, or stand still?
The electric potential in a region of space is V=( 260 x2− 160 y2)V, where x...
The electric potential in a region of space is V=( 260 x2− 160 y2)V, where x and y are in meters. What is the direction of the electric field at (x,y)=(2.0m,2.0m)? Give the direction as an angle (in degrees) counterclockwise from the positive x-axis. THe strenght of the electric field is 1200 V/m.
The electric potential in a region of space is given by V ( x,y,z ) =...
The electric potential in a region of space is given by V ( x,y,z ) = -x^2 + 2y^2 + 15. If a 5 Coulomb particle is placed at position (x,y,z)=(-2,-2,0), what is the magnitude and direction of the force it experiences?
In a certain region of space the electric potential is given by V=+Ax2y−Bxy2, where A = 5.00 V/m3 and B = 8.00 V/m3. Calculate the...
In a certain region of space the electric potential is given by V=+Ax2y−Bxy2, where A = 5.00 V/m3 and B = 8.00 V/m3. Calculate the magnitude of the electric field at the point in the region that has cordinates x = 2.20 m, y = 0.400 m, and z = 0 Calculate the direction angle of the electric field at the point in the region that has cordinates x = 2.20 m, y = 0.400 m, and z = 0.
The electric potential in a region is given by V(x,y,z) = -10.0x2 + 20.0xyz + 6.0y3...
The electric potential in a region is given by V(x,y,z) = -10.0x2 + 20.0xyz + 6.0y3 a) Find the electric field that produces this potential? b) Find the amount of charge contained within a cubic region in space 20 cm on a side and centered at the point (10.0 cm, 10.0 cm, 10.0 cm).
The electric potential in a region of space is V=( 260 x2− 160 y2)V, where x...
The electric potential in a region of space is V=( 260 x2− 160 y2)V, where x and y are in meters. What is the strength of the electric field at  (x,y)=(2.0m,2.0m) ? What is the direction of the electric field at  (x,y)=(2.0m,2.0m)? Give the direction as an angle (in degrees) counterclockwise from the positive x-axis.
please explain why!! 1. An electron is released from rest in a region of space with...
please explain why!! 1. An electron is released from rest in a region of space with a nonzero electric field. As the electron moves, does the electric potential energy of the system increase or decrease? Explain. 2. An electron is released from rest in a region of space with a nonzero electric field. As the electron moves, does the electron move from a position of high to low electric potential? Explain.
In a certain region of space, there is a uniform electric field E= 4.3 x 104...
In a certain region of space, there is a uniform electric field E= 4.3 x 104 V/m to the east and a uniform magnetic field B = .0073 T to the west. a) What is the electromagnetic force on an electron moving north at 3.7 x 107 m/s? b) With the electric and magnetic fields as specified, is there some velocity such that the net electromagnetic force on the electron would be zero?
The potential in a region between x = 0 and x = 6.00 m is V...
The potential in a region between x = 0 and x = 6.00 m is V = a + bx, where a = 19.4 V and b = -6.70 V/m. (a) Determine the potential at x = 0. V Determine the potential at x = 3.00 m. V Determine the potential at x = 6.00 m. V (b) Determine the magnitude and direction of the electric field at x = 0. magnitude V/m direction ---Select--- +x -x Determine the magnitude...
There's an electric field in some region of space that doesn't change with position. An electron...
There's an electric field in some region of space that doesn't change with position. An electron starts moving with a speed of 2.0 ×× 1077 m/sm/s in a direction opposite to the field. Its speed increases to 4.0 ×× 1077 m/sm/s over a distance of 1.6 cmcm.