Question

Three point charges and a test charge are used to create a square with a length...

Three point charges and a test charge are used to create a square with a length of 2 meters on each side. q1(bottom left) has a charge of 1 nC. q2(top left) has a charge of -2 nC. q3(top right) has a charge of 3 nC. q4(bottom right) is the test charge. Calculate E at the test charge.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. The force between two charges is 4×10−9N. If the magnitude of one charge reduced by...
1. The force between two charges is 4×10−9N. If the magnitude of one charge reduced by a factor of two and the distance between the charges is reduced by a factor of two, what is the new force between the charges? 2. What is the magnitude of the electric field from 20cm from a point charge of q=33nC? 3. What is the electric field 10cm from a 50-cm-radius metal sphere carrying −4.5×106C of charge? 4. Point charges are located at...
Three point charges q1=1 μC , q2=2 μC and q3=-3 μC are located at three corners...
Three point charges q1=1 μC , q2=2 μC and q3=-3 μC are located at three corners of a square of side a=2 cm . Charge q3 is located diagonally opposed to the empty corner of the square. Calculate the electric potential created by the three charges at the empty corner of the square. Calculate the work done by the electric field of the three charges when a fourth charge q4=-4 μC moves from the center of the square to the...
Three point charges are arranged so that they each lie on the vertex of what appears...
Three point charges are arranged so that they each lie on the vertex of what appears to be an equilateral triangle of side length 1 cm. At the bottom, the two charges are the same (from left to right), each having charge +10 nC (nanoCoulomb). At the vertex on the top, the charge there is (-)20 nC (it's a negative charge). Find the magnitude and direction of the net electric force on the top charge due to the bottom two.
The figure below shows three small, positively charged spheres at three corners of a rectangle. The...
The figure below shows three small, positively charged spheres at three corners of a rectangle. The particle at upper left has a charge q1 = 6.00 nC, the one at the lower left has a charge of q2 = 7.00 nC, and the one at lower right has a charge q3 = 3.00 nC. The rectangle's horizontal side has length x = 5.50 cm and its vertical side has length y = 3.50 cm. Three positive charges lie at three...
Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the...
Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the length of each side is 3.50 cm . Point a is at the center of the square, and point b is at the empty corner closest to q2. Take the electric potential to be zero at a distance far from both charges. A point charge q3 = -5.00 μC moves from point a to point b. How much work is done on q3 by...
Three point charges are arranged as shown in the figure to the right. Charge q1 =...
Three point charges are arranged as shown in the figure to the right. Charge q1 = +2.0 nC and is located on the y-axis at y = 3.0 m, charge q2 = +6.0 nC and is located on the x-axis at x = 2.0 m, and charge q3 = -5.0 nC and is located at x = +2 m, y = +3.0 m. (a) What is the net force (magnitude and direction) acting on charge q3? (b) What is the...
A point charge q1 = 3.90 nC is placed at the origin, and a second point...
A point charge q1 = 3.90 nC is placed at the origin, and a second point charge q2 = -2.90 nC is placed on the x-axis at x=+ 21.0 cm. A third point charge q3 = 2.00 nC is to be placed on the x-axis between q1 and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) a- What is the potential energy of the system of the three charges if q3...
A point charge q1 = 3.90 nC is placed at the origin, and a second point...
A point charge q1 = 3.90 nC is placed at the origin, and a second point charge q2 = -3.10 nC is placed on the x-axis at x=+ 20.0 cm . A third point charge q3 = 2.10 nC is to be placed on the x-axis between q1 and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) PART A: What is the potential energy of the system of the three charges...
In the figure the four particles form a square of edge length a = 5.60 cm...
In the figure the four particles form a square of edge length a = 5.60 cm and have charges q1 = 6.16 nC, q2 = -21.6 nC, q3 = 21.6 nC, and q4 = -6.16 nC. What is the magnitude of the net electric field produced by the particles at the square's center?
A point charge q1 = 4.10 nC is placed at the origin, and a second point...
A point charge q1 = 4.10 nC is placed at the origin, and a second point charge q2 = -3.10 nC is placed on the x-axis at x=+ 21.0 cm . A third point charge q3 = 1.90 nC is to be placed on the x-axis between q1 and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) Part A What is the potential energy of the system of the three charges...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT