Question

Q. Electrons are accelerated in a television tube through a potential difference of 9.8 kV. Find...

Q. Electrons are accelerated in a television tube through a
potential difference of 9.8 kV. Find the highest frequency and
minimum wavelength of the electromagnetic wave emitted,
when theses electrons strike the screen of the tube. In which
region of the spectrum will these waves lie?  

and

Q. High energy photons ( y -rays) are scattered from electrons initially at
rest. Assume the photons are backscatterred and their energies are much
larger than the electron’s rest-mass energy, E >> m0c2

(a) Calculate the wavelength shift.
(b) Show that the energy of the scattered photons is half the rest mass
energy of the electron, regardless of the energy of the incident photons.
(c) Calculate the electron’s recoil kinetic energy if the energy of the
incident photons is 150 MeV.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Electrons are accelerated in a television screen tube with a potential difference about 10,000 volts. Find...
Electrons are accelerated in a television screen tube with a potential difference about 10,000 volts. Find the maximum frequency of X-rays that are emitted when these electrons hit the screen.
Electrons are accelerated through a potential difference of 3.59 kV in a cathode ray tube. Calculate...
Electrons are accelerated through a potential difference of 3.59 kV in a cathode ray tube. Calculate the de Broglie wavelength of the electrons.
Electrons are accelerated through a potential difference of 25 kV and then incident on a metal...
Electrons are accelerated through a potential difference of 25 kV and then incident on a metal target, creating x-rays. What are the following quantities? a) minimum X-ray frequency? b) maximum X-ray frequency? c) minimum X-ray wavelength? d) maximum X-ray wavelength?
Electrons are accelerated through a voltage difference of 210 kV inside a high voltage accelerator tube....
Electrons are accelerated through a voltage difference of 210 kV inside a high voltage accelerator tube. What is the final kinetic energy of the electrons? Tries 0/20 What is the speed of these electrons in terms of the speed of the light? (Remember that the electrons will be relativistic.) Tries 0/20
In a color television tube, electrons are accelerated through a potential difference of  15500 V. With what...
In a color television tube, electrons are accelerated through a potential difference of  15500 V. With what speed do the electrons strike the screen? Give this speed in terms of the speed of light. Hint: The kinetic energy of an electron which has been accelerated through a potential difference of 1 V has a kinetic energy equal to 1 eV. The Range of answers is between  0.230 and 0.310c I tried to use the conservation principle (1/2 mv2=qv), but that didn't get...
An evacuated tube uses a potential difference of ΔV = 0.58 kV to accelerate electrons, which...
An evacuated tube uses a potential difference of ΔV = 0.58 kV to accelerate electrons, which then hit a copper plate and produce X-rays. Write an expression for the non-relativistic speed of these electrons v in terms of e, ΔV, and m, assuming the electrons start from rest. Calculate the non-relativistic speed of these electrons v in m/s. & The temperature near the center of the Sun is thought to be about 15 million degrees Celsius, that is, 1.5 ×...
Q1. Electrons are accelerated through a voltage difference of 280 kV inside a high voltage accelerator...
Q1. Electrons are accelerated through a voltage difference of 280 kV inside a high voltage accelerator tube. What is the final kinetic energy of the electrons? A. 2.80×105 eV Q2.What is the speed of these electrons in terms of the speed of the light? (Remember that the electrons will be relativistic.)
For electron microscope which accelerates electrons from rest through a potential difference of 10 kV. (a)...
For electron microscope which accelerates electrons from rest through a potential difference of 10 kV. (a) If the potential energy of an electron is taken to be 0 initially (at a 0 V plate), what potential energy does it have in Joules after accelerating to the 10 kV plate? (The electrons actually pass through a small hole in this plate before continuing on toward the sample). (b) What speed does the electron reach by the time it reaches the 10...
Electrons are accelerated through a potential difference of 940 kV, so that their kinetic energy is...
Electrons are accelerated through a potential difference of 940 kV, so that their kinetic energy is 9.40×105 eV. A) What is the ratio of the speed v of an electron having this energy to the speed of light, c? B) What would the speed be if it were computed from the principles of classical mechanics?
A number of electrons are accelerated from rest through a potential difference V. They are then...
A number of electrons are accelerated from rest through a potential difference V. They are then incident on a double slit setup with slit spacing d=74.4nm. The m=672 order maximum for this pattern is observed at θ=14.6∘ from the normal to the slits. 1. What is the wavelength of the electrons? 2. What is the momentum of this electron? 3. Making the approximation that relativistic effects are negligible, what is potential difference, V, through which the electrons were accelerated?