Question

A skater spins with angular velocity of 12 rad/s with his arms extended. How fast will...

A skater spins with angular velocity of 12 rad/s with his arms extended. How fast will he spin with his arms byhis sides? Treat the skater’s body as a uniform cylinder of radius R = (your student number) cm; approximate his armsas uniform rods of length L = 40 cm and mass m = 4.5 kg. His total mass excluding arms is M = 80 kg.

Student number is 9

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An ice skater spins about a vertical axis with an angular speed of 15 rad/s with...
An ice skater spins about a vertical axis with an angular speed of 15 rad/s with arms fully extended horizontally. Then the arms are pulled in quickly with no friction. Suppose the initial rotational inertia is 1.72 kg*m^2 and the final is .61 kg*m^2. a) what is the final angular velocity of the skater? b) what is the change in the skater's kinetic energy? c) where does the additional kinetic engery come from? What is being done when the arms...
What is the angular momentum of a figure skater spinning at 2.3 rev/s with arms in...
What is the angular momentum of a figure skater spinning at 2.3 rev/s with arms in close to her body, assuming her to be a uniform cylinder with a height of 1.5 m, a radius of 16 cm , and a mass of 49 kg ? How much torque(in magnitude) is required to slow her to a stop in 4.8 s , assuming she does not move her arms?
a. What is the angular momentum of a figure skater spinning at 2.0 rev/s with arms...
a. What is the angular momentum of a figure skater spinning at 2.0 rev/s with arms in close to her body, assuming her to be a uniform cylinder with a height of 1 m, a radius of 0.2 m, and a mass of 50 kg? b. How much torque is required to slow her to a stop in 5.0 s, assuming she does not move her arms?
The outstretched hands and arms of a figure skater preparing for a spin can be considered...
The outstretched hands and arms of a figure skater preparing for a spin can be considered a slender rod pivoting about an axis through its center (Figure 1). When his hands and arms are brought in and wrapped around his body to execute the spin, the hands and arms can be considered a thin-walled hollow cylinder. His hands and arms have a combined mass 8.0 kg . When outstretched, they span 1.7 m ; when wrapped, they form a thin-walled...
The outstretched hands and arms of a figure skater preparing for a spin can be considered...
The outstretched hands and arms of a figure skater preparing for a spin can be considered a slender rod pivoting about an axis through its center (Figure 1). When his hands and arms are brought in and wrapped around his body to execute the spin, the hands and arms can be considered a thin-walled hollow cylinder. His hands and arms have a combined mass 9.0 kg . When outstretched, they span 1.6 m ; when wrapped, they form a cylinder...
Diana, a figure skater, is initially spinning at an angular speed 2.50 rev/s, with her arms...
Diana, a figure skater, is initially spinning at an angular speed 2.50 rev/s, with her arms and legs inward. Assume that she is a uniform cylinder with a height of 1.4 m, a radius of 18 cm, and a mass of 55 kg. Assume no external torques act. a) What is her moment of inertia? b) If she extends her arms outward, what is her new moment of inertia? Assume that her armspan is 1.3 m and her arms are...
What is the angular momentum of a figure skater spinning at 3.2rev/s with arms in close...
What is the angular momentum of a figure skater spinning at 3.2rev/s with arms in close to her body, assuming her to be a uniform cylinder with a height of 1.5m , a radius of 16cm , and a mass of 55kg? How much torque is required to slow her to a stop in 4.4s , assuming she does not move her arms?
The outstretched hands and arms of a figure skater preparing for a spin can be considered...
The outstretched hands and arms of a figure skater preparing for a spin can be considered a slender rod pivoting about an axis through its center. (See the figure below (Figure 1).) When the skater's hands and arms are brought in and wrapped around his body to execute the spin, the hands and arms can be considered a thin-walled hollow cylinder. His hands and arms have a combined mass of 7.5 kgkg . When outstretched, they span 1.8 mm ;...
On average, both arms and hands together account for 13% of a person's mass, while the...
On average, both arms and hands together account for 13% of a person's mass, while the head is 7.0% and the trunk and legs account for 80%. We can model a spinning skater with her arms outstretched as a vertical cylinder (head, trunk, and legs) with two solid uniform rods (arms and hands) extended horizontally. Suppose a 60.0 kg skater is 1.60 m tall, has arms that are each 74.0 cm long (including the hands), and a trunk that can...
On average, both arms and hands together account for 13 % of a person's mass, while...
On average, both arms and hands together account for 13 % of a person's mass, while the head is 7.0 % and the trunk and legs account for 80 % . We can model a spinning skater with her arms outstretched as a vertical cylinder (head, trunk, and legs) with two solid uniform rods (arms and hands) extended horizontally. Suppose a 73.0 kg skater is 1.60 m tall, has arms that are each 68.0 cm long (including the hands), and...