Question

standing waves on a string lab Write the slope in terms of F, μ, and L...

standing waves on a string lab

Write the slope in terms of F, μ, and L

f = ( 1/2L √F/Tμ ) n

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a string of length L that is clamped at both ends so standing waves that...
Consider a string of length L that is clamped at both ends so standing waves that form on the string have nodes at end points. The string is actually composed of two parts, connected at the middle. Waves of first part (on left) have phase velocity vo, while waves of second part (on right) have phase velocity 2vo. Waves travel from end to end, but standing waves must have a node at the center (where the two parts are connected)....
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at...
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at successive (that is, modes m and m + 1) frequencies of 38 Hz and 42 Hz respectively. The tension in the string is 720 N. What is the fundamental frequency of the standing wave? Hint: recall that every harmonic frequency of a standing wave is a multiple of the fundamental frequency. What is the speed of the wave in the string? What is the...
A standing wave pattern is created on a string with mass density μ = 3 ×...
A standing wave pattern is created on a string with mass density μ = 3 × 10-4 kg/m. A wave generator with frequency f = 63 Hz is attached to one end of the string and the other end goes over a pulley and is connected to a mass (ignore the weight of the string between the pulley and mass). The distance between the generator and pulley is L = 0.68 m. Initially the 3rd harmonic wave pattern is formed....
A standing wave pattern is created on a string with mass density μ = 3 ×...
A standing wave pattern is created on a string with mass density μ = 3 × 10-4 kg/m. A wave generator with frequency f = 63 Hz is attached to one end of the string and the other end goes over a pulley and is connected to a mass (ignore the weight of the string between the pulley and mass). The distance between the generator and pulley is L = 0.68 m. Initially the 3rd harmonic wave pattern is formed....
Oscillation of a 230 Hz tuning fork sets up standing waves in a string clamped at...
Oscillation of a 230 Hz tuning fork sets up standing waves in a string clamped at both ends. The wave speed for the string is 750 m/s. The standing wave has four loops and an amplitude of 1.6 mm. (a) What is the length of the string? (b) Write an equation for the displacement of the string as a function of position and time. Round numeric coefficients to three significant digits.
1a. Derive a formula for the wavelength of a standing wave on a fixed string at...
1a. Derive a formula for the wavelength of a standing wave on a fixed string at both ends in terms of the number of antinodes, n, and the length of the string. 1b. For an aluminum rod, when a wave is set up in the rod, do you expect the ends of the rod to allow vibrations or not? Are they considered open or closed for displacement? 1c. Draw schematic pictures of the two longest wavelengths that could fit on...
In your own words, explain the meaning of the following terms: Transverse waves Longitudinal waves Standing...
In your own words, explain the meaning of the following terms: Transverse waves Longitudinal waves Standing waves Shock waves
In an experiment on standing waves, a string 57 cm long is attached to the prong...
In an experiment on standing waves, a string 57 cm long is attached to the prong of an electrically driven tuning fork that oscillates perpendicular to the length of the string at a frequency of 60 Hz. The mass of the string is 0.044 kg. What tension must the string be under (weights are attached to the other end) if it is to oscillate in four loops?
In the arrangement shown below, an object can be hung from a string (with linear mass...
In the arrangement shown below, an object can be hung from a string (with linear mass density μ = 0.00200 kg/m) that passes over a light pulley. The string is connected to a vibrator (of constant frequency f), and the length of the string between point P and the pulley is L = 2.30 m. When the mass m of the object is either 25.0 kg or 36.0 kg, standing waves are observed; no standing waves are observed with any...
In the arrangement shown below, an object can be hung from a string (with linear mass...
In the arrangement shown below, an object can be hung from a string (with linear mass density μ = 0.00200 kg/m) that passes over a light pulley. The string is connected to a vibrator (of constant frequency f), and the length of the string between point P and the pulley is L = 2.10 m. When the mass m of the object is either 25.0 kg or 36.0 kg, standing waves are observed; no standing waves are observed with any...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT