Question

90. The spring of a spring gun has a constant of 500N/m. It is compressed a...

90. The spring of a spring gun has a constant of 500N/m. It is compressed a distance x = 0.05m and a ball of mass 0.10kg is placed in the barrel against the compressed spring.


Compute the maximum speed with which the ball leaves the gun when released.( consider Conservation of Energy)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2. A nerf gun is loaded with a spring. The spring has a spring constant of...
2. A nerf gun is loaded with a spring. The spring has a spring constant of 400 N/m and the “ammunition” is a foam dart with a mass of 0.2kg. When loaded, the spring is compressed 0.05m. (Ignore any air resistance.) a) How much elastic potential energy does the foam dart have when the spring is compressed and the nerf gun is fully loaded? b) How much kinetic energy does the foam dart have when the spring is compressed and...
A vertical elastic spring with a spring constant of 619 N/m is compressed 25 cm. A...
A vertical elastic spring with a spring constant of 619 N/m is compressed 25 cm. A ball of mass 320 grams is placed at rest on top of the compressed spring. Take that the height of the ball at this position is zero. The spring is then released so the ball is shot straight up. a)Find the total initial energy of the system consisting of the ball and the spring. b)Find the total potential (i.e before the ball is shot)...
The launching mechanism of a toy gun consists of a spring of unknown spring constant, as...
The launching mechanism of a toy gun consists of a spring of unknown spring constant, as shown in the figure below. If the spring is compressed a distance of 0.200 m and the gun fired vertically as shown, the gun can launch a 16.0-g projectile from rest to a maximum height of 26.0 m above the starting point of the projectile. Figures a and b show a ball in a toy spring gun, oriented with its barrel vertical and opening...
In a spring gun system, a spring with a spring force constant 430 N/mN/m  , is compressed...
In a spring gun system, a spring with a spring force constant 430 N/mN/m  , is compressed 0.11 mm . When fired, 80.7 %% of the elastic potential energy stored in the spring is eventually converted into kinetic energy of a 6.50×10−2 kgkg uniform ball that is rolling without slipping at the base of a ramp. The ball continues to roll without slipping up the ramp with 89.6 %% of the kinetic energy at the bottom converted into an increase in...
In a spring gun system, a spring with a spring force constant 370 N/m  , is compressed...
In a spring gun system, a spring with a spring force constant 370 N/m  , is compressed 0.13 m . When fired, 79.1% of the elastic potential energy stored in the spring is eventually converted into kinetic energy of a 5.50×10−2 kg uniform ball that is rolling without slipping at the base of a ramp. The ball continues to roll without slipping up the ramp with 90.3 % of the kinetic energy at the bottom converted into an increase in gravitational...
In a spring gun system, a spring with a spring force constant 350 N/mN/m  , is compressed...
In a spring gun system, a spring with a spring force constant 350 N/mN/m  , is compressed 0.11 mm . When fired, 81.0 %% of the elastic potential energy stored in the spring is eventually converted into kinetic energy of a 6.40×10−2 kgkg uniform ball that is rolling without slipping at the base of a ramp. The ball continues to roll without slipping up the ramp with 90.0 %% of the kinetic energy at the bottom converted into an increase in...
A ball with mass m = 50.0 g, is sitting on a vertical spring whose force...
A ball with mass m = 50.0 g, is sitting on a vertical spring whose force constant is 120.0 N/m. The initial position of the spring is at y = 0.00 m. The spring is compressed downward a distance x = 0.200 m. From the compressed position, how high will the ball bearing rise? How high is does the ball bearing rise above the position at y = 0.00 m? What is the kinetic energy of the ball at the...
A mass of 3.8 is placed on a stiff vertical spring, which has a spring constant...
A mass of 3.8 is placed on a stiff vertical spring, which has a spring constant of 950n/m The object is then pressed against the spring until it has been compressed a distance of 88.7cm. The mass is then released and is allowed to be thrown up into the air. a What will be the elastic potential energy stored on the spring just before the mass is released? b What will be the gravitational potential energy be of this mass...
A spring with a spring constant of 302 N/m is initially compressed by a distance of...
A spring with a spring constant of 302 N/m is initially compressed by a distance of 0.078 m from its equilibrium position. A mass of 0.038 kg is then held against the compressed spring and released from rest while upon a horizontal, frictionless surface. Assuming that the spring then pushes the mass across the surface, with speed does the mass leave the spring? Assume proper SI Units.
A spring gun (k = 750 N/m) is loaded with a 55.3 g ball and compressed...
A spring gun (k = 750 N/m) is loaded with a 55.3 g ball and compressed 12.0 cm. The gun is then fired horizontally off a 8.0 m high platform. (a) How fast will the ball be moving just as it leaves the spring gun (before it begins to fall)? (b) Determine the speed of the ball as it hits the ground. (Assume the ball is 8.0 m above the ground when it is fired.)