Question

A block of mass 13.0 kg slides from rest down a frictionless 39.0° incline and is...

A block of mass 13.0 kg slides from rest down a frictionless 39.0° incline and is stopped by a strong spring with k = 2.70 ✕ 104 N/m. The block slides 3.00 m from the point of release to the point where it comes to rest against the spring. When the block comes to rest, how far has the spring been compressed?
m

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) A block is released from point A and it slides down an incline (theta =...
1) A block is released from point A and it slides down an incline (theta = 30 degrees) where the coefficient of kinetic friction is 0.3. It goes 5m and hits a spring with a spring constant k = 500 N/m. While it is being acted upon by the spring, assume it is on a frictionless surface. a) How far is the spring compressed? b) How far does the block go up the plane on the rebound from the spring?...
A block of mass m=12 kg is released from rest on an incline with a coefficient...
A block of mass m=12 kg is released from rest on an incline with a coefficient of kinetic friction 0.25, and at an angle θ=30◦ . Below the block is a spring that can be compressed 2.5 cm by a force of 280 N. The block momentarily stops when it compresses the spring by 5.5 cm. (a) How far does the block move down the incline from its rest position to this stopping point? (b) What is the speed of...
An mm = 3.50 kg block starts from rest and slides down a friction-less incline, dropping...
An mm = 3.50 kg block starts from rest and slides down a friction-less incline, dropping a vertical distance of y = 2.60 m, compressing a spring at the bottom of the incline. The spring has a force constant of k = 2.50 ×104 N/m. Find the maximum compression of the spring. Part 1 + Give an algebraic expression for finding the maximum compression of the spring in terms of mm, g, y, and k. x = Part 2 Find...
Name:__________________________________________Section____ A block of mass ? = 12.0 kg is released from rest on an incline...
Name:__________________________________________Section____ A block of mass ? = 12.0 kg is released from rest on an incline angled at θ = 30 degrees. The block slides down and incline of length ? = 1.40 m along the incline, which has a coefficient of kinetic friction between the incline and the block of ?? = 0.180. The block then slides on a horizontal frictionless surface until it encounters a spring with a spring constant of ? = 205 N/m. Refer to the...
A 9.0-kg box of oranges slides from rest down a frictionless incline from a height of...
A 9.0-kg box of oranges slides from rest down a frictionless incline from a height of 5.0 m. A constant frictional force, introduced at point A, brings the block to rest at point B. If the coefficient of kinetic friction is 0.26, what is the distance between A and B?
A 0.20-kg block slides from rest down a frictionless track from a height of 1.5 m,...
A 0.20-kg block slides from rest down a frictionless track from a height of 1.5 m, and encounters a loop that is 1.0 m high. (a) What is the speed of the block at the top of the loop? (b) The block is slowed by a spring at the bottom of the track. If the stiffness of the spring is 0.90 kN/m, how far does the block slide before coming to rest?
A small block has constant acceleration as it slides down a frictionless incline. The block is...
A small block has constant acceleration as it slides down a frictionless incline. The block is released from rest at the top of the incline, and its speed after it has traveled 7.00 mm to the bottom of the incline is 3.80 m/s . What is the speed of the block when it is 3.00 mm from the top of the incline?
A block of mass m = 2.10 kg slides down a 30.0∘ incline which is 3.60...
A block of mass m = 2.10 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 8.00 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. Determine the speed of the block with mass m = 2.10 kg after the collision. Determine the speed of the...
Part a. Starting from rest, a 14 kg box slides down a frictionless incline that is...
Part a. Starting from rest, a 14 kg box slides down a frictionless incline that is 7 meters tall. What is the velocity of the box at the bottom of the incline? Part b. A thin hoop of mass 14 kg and radius 1.2 m rolls down an incline that is 7 meters tall. What is the velocity of the thin hoop at the bottom of the incline? Part c. A solid disk of mass 14 kg and radius 1.2...
A 8 kg block slides down a frictionless incline making an angle of 20◦ with the...
A 8 kg block slides down a frictionless incline making an angle of 20◦ with the horizontal. The acceleration of gravity is 9.81 m/s2 . a) Find the work done by the gravitational force when the block slides 5.9 m (measured along the incline). b) What is the total work done on the block? c) What is the speed of the block after it has moved 5.9 m if it starts from rest? d) What is its speed after 5.9...