Question

Which of the followings all point in the same direction? a-electron current and current b-electron field...

Which of the followings all point in the same direction?

a-electron current and current

b-electron field and the electron current

c-electron field and the current

d-electron current, electron drift speed and the electric field

e-current, motion of the proton, increase of potential difference

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron and a proton enter a region of uniform magnetic field at the same point...
An electron and a proton enter a region of uniform magnetic field at the same point (not at the same time) with the same velocity, and exit in the direction opposite to which they entered the region. If the distance between the point of entry and exit of the electron is d, what is the distance (in terms of d) between the point of entry and exit for the proton?
A proton and an electron are fixed in space with a separation of 947 nm. Calculate...
A proton and an electron are fixed in space with a separation of 947 nm. Calculate the electric potential at the midpoint between the two particles. Find the magnitude and direction of the electric field at the same point. Potential: _____V Magnitude of field: ______N/C Direction of field: (a) toward the proton (b) toward the electron (c) another direction (d) undetermined
An electron flies out of a point of an electric field, where the electric potential is...
An electron flies out of a point of an electric field, where the electric potential is 0 = 600V, with the velocity v = 1,2x10^7 m/s in the direction of the field lines. Find the electric potential in a point where the speed of the electron is zero.
A proton and an electron are fixed in space with a separation of 837 nm. Calculate...
A proton and an electron are fixed in space with a separation of 837 nm. Calculate the electric potential at the midpoint between the two particles. potential: V Find the magnitude of the electric field at the same point. magnitude of field: N/C The direction of field is toward the proton. toward the electron. another direction. undetermined.
QUESTION When an electron is released from rest in a constant electric field, how does the...
QUESTION When an electron is released from rest in a constant electric field, how does the electric potential energy associated with the electron, and the kinetic energy of the electron, change with time? (Select all that apply.) options:The electric potential energy becomes more negative.The electric potential energy becomes more positive.The kinetic energy becomes more negative.The kinetic energy stays the same.The electric potential energy stays the same.The kinetic energy becomes more positive. Use the worked example above to help you solve...
electron is moving towards south. as it moves thru magnetic field, electron curves upward toward ceiling...
electron is moving towards south. as it moves thru magnetic field, electron curves upward toward ceiling of lab. which direction is the magnetic field pointing? choices: east downward upward west north if you hold a charge in each hand and let them go in space, what is the true regarding motion of smaller charge. select all that apply it will move with decreasing acceleration it will move with increasing acc it will move with increasing speed it will move with...
25. Around any electron in motion we have a. electric field. b. magnetic field. c. both...
25. Around any electron in motion we have a. electric field. b. magnetic field. c. both fields.    26. The lines of magnetic field generated by a current passing: a) are in the direction of the current b) are opposite to the direction of the current c) leave the cable radially OR are concentric circles around the cable 27. A field____can act on a moving electric charge. a. electric b. magnetic. c. both of them. 28. A magnetic field does...
An electron is initially at ground level, and the electric potential at that point is assumed...
An electron is initially at ground level, and the electric potential at that point is assumed to be exactly 0. The electron is immersed in a uniform electric field that points down with a magnitude of 2.7x10^ -11 N/C as well as Earth's graviational field (9.8 N/kg pointing down). Only gravity and the electric force are relevant. a) If the electron is given an initial upward speed of 30 m/s, what is the maximum height above the ground that it...
An electron enters a region of uniform electric field with an initial velocity of 70 km/s...
An electron enters a region of uniform electric field with an initial velocity of 70 km/s in the same direction as the electric field, which has magnitude E = 48 N/C. (a) What is the speed of the electron 1.9 ns after entering this region? (b) How far does the electron travel during the 1.9 ns interval?
An electron enters a region of uniform electric field with an initial velocity of 42 km/s...
An electron enters a region of uniform electric field with an initial velocity of 42 km/s in the same direction as the electric field, which has magnitude E = 51 N/C. (a) What is the speed of the electron 1.3 ns after entering this region? (b) How far does the electron travel during the 1.3 ns interval?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT