Question

system, a rigid tank, contains mixture of saturated water vapor and saturated liquid at 90 oC. Total mass is 1.5 kg. quality is 0,34. system is heated untill all liquid is converted into vapor. how much heat is transferred to the syste, show this process in P-v-diagram

Answer #1

A 0.1-m3 rigid tank contains saturated liquid-vapor mixture of
water, initially at 150 kPa and 52 percent quality. Heat is now
transferred to the tank until the system becomes superheated vapor
and the pressure reaches 300 kPa. Determine (a) the total mass of
the mixture in the tank and (b) the amount of heat transferred.

A rigid tank has a volume of 0.01 m3. It
initially contains saturated water at a temperature of 200
oC and a quality of 0.4. The top of the
tank contains a pressure regulating valve which maintains the vapor
at constant pressure. This system undergoes a process where it is
heated until all the liquid vaporizes. How much heat in (kJ) is
required? You may assume there is no pressure drop in the exit
line.

Initially (state 1) a well-insulated rigid tank contains 20 kg
of a saturated liquid-vapor mixture of water at 100 kPa and half of
the mass is in the liquid phase. An electric resistance heater
placed in the tank is now turned on and kept on until all the
liquid in the tank is vaporized (state 2). Determine (a) the
initial specific volume in m3/kg, (b) the final specific
entropy in kJ/kg.K and (c) change of entropy in kJ/K.

Water of mass 2 kg in a closed, rigid tank is initially in the
form of a twophase liquid-vapor mixture. The initial temperature is
50° C. The mixture is heated until the tank contains only saturated
vapor at 110° C.
(i) Find the initial pressure, in kPa.
(ii) Find the work for the process, in kJ.
(iii) Find the heat transfer for the process, in kJ.

A closed, rigid tank is filled with water. Initially, the tank
holds 1.0 lb of saturated vapor and 7.0 lb of saturated liquid,
each at 212°F. The water is heated until the tank contains only
saturated vapor. Kinetic and potential energy effects can be
ignored. Determine the volume of the tank, in ft3, the temperature
at the final state, in °F, and the heat transfer, in Btu.

A tank having a volume of 0.85 m^3 initially contains water as a
two-phase liquid vapor mixture at 260 C and a quality of 0.7.
Saturated water vapor at 260 C is slowly withdrawn through a
pressure-regulating valve at the top of the tank as energy is
transferred by heat to maintain the pressure constant in the tank.
This continues until the tank is filled with saturated vapor at 260
C. Determine the amount of heat transfer in kJ. Neglect...

Find the volume forr a system of saturated liquid-vapor mixture
of water at 200 °C that contains 20 kg vapor AND 80 kg liquid

A 0.6-m3 rigid tank is filled with saturated
liquid water at 170
°C. A valve at the bottom of
the tank is now opened, and one-half of the total mass is withdrawn
from the tank in liquid
form. Heat is transferred to water from a source of 210 °C so that
the temperature in the tank
remains constant. Determine (a) the amount of heat transfer and (b)
the reversible work and
exergy destruction for this process. Assume the surroundings to...

A cylinder-piston device contains a mass of 2.4 kg of
liquid-vapor mixture water with 70% titer at 50 bar. The system
goes through a process of cooling to constant pressure until the
obtaining compressed liquid with 14 ºC of subcooling. Evaluate:
(i) The initial and final temperatures of the process.
(ii) The specific enthalpy at the beginning of the process.
(iii) The change in total volume during the process.
(iv) The amount of heat removed from the system during the...

Q3. A tank with rigid walls and a volume of
0.05 m3 initially has a two-phase liquid- vapor mixture of ammonia
at a pressure of 4 bar and a quality of 10%. The tank is then
heated such that the pressure is kept constant through a
pressure-regulating valve that allows saturated vapor to escape.
The heating continues until the quality of the mixture in the tank
is 40%. Assume kinetic and potential energy changes are
insignificant. Determine:
(i) The final...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 8 minutes ago

asked 14 minutes ago

asked 18 minutes ago

asked 18 minutes ago

asked 18 minutes ago

asked 21 minutes ago

asked 36 minutes ago

asked 39 minutes ago

asked 55 minutes ago

asked 55 minutes ago

asked 56 minutes ago

asked 56 minutes ago