Question

Derive the Sacker-Tetrode Equation which is the entropy expression for N indistinguishable ideal gas atoms of...

  1. Derive the Sacker-Tetrode Equation which is the entropy expression for N indistinguishable ideal gas atoms of total energy U in a container of volume V.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a system composed of a very large number (N >>1) of indistinguishable atoms, each of...
Consider a system composed of a very large number (N >>1) of indistinguishable atoms, each of which has only two energy levels 0 and . In thermodynamic equilibrium, there are n particles each with energy  and the total energy of the system is E. (10 points) a) Write and equation for the number of microstates  in terms of N, E, and . b) Use the Stirling approximation to write an equation for the entropy S. E 1 and...
A monatomic ideal gas in a container of fixed volume contains 4.10 × 10^24 atoms. a)...
A monatomic ideal gas in a container of fixed volume contains 4.10 × 10^24 atoms. a) If you add enough thermal energy to double the root-mean-square speed of the gas atoms, by how much have you changed the entropy of the gas?
Derive the entropy change in the isothermal expansion of an ideal gas.
Derive the entropy change in the isothermal expansion of an ideal gas.
Derive the expression for the excess dimensionless entropy of mixing S E /kB as a function...
Derive the expression for the excess dimensionless entropy of mixing S E /kB as a function of polymer volume fraction, as given by the Flory model. Excess entropy is the entropy of mixing minus the ideal entropy of mixing.
(a) Calculate the change in entropy of an ideal gas [for which p = nRT/V] when...
(a) Calculate the change in entropy of an ideal gas [for which p = nRT/V] when its volume is doubled at fixed temperature and number of molecules. (b) Repeat the calculation for a van der Waals gas [ for which p = nRT/(V–nb) – a (n/V)^2 ] (c) Give a physical explanation for the difference between the two.
You are given an ideal monatomic gas of N = 1.00 × 1023 atoms at temperature...
You are given an ideal monatomic gas of N = 1.00 × 1023 atoms at temperature T = 300K, and volumeV = 20 L. Find: (a) The pressure in the gas in Pa. (b) The work done in Joules when the gas is compressed slowly and isothermally to half its volume. (c) The change in internal energy of the gas in Joules during process (b). (d) The heat (in J) absorbed or given up by the gas during process (b)....
Consider a free fermion gas of N particles in a volume V at zero temperature. The...
Consider a free fermion gas of N particles in a volume V at zero temperature. The total kinetic energy of the gas is U = (3/5)N epsilon-F with epsilon-F = (hbar^2/2m)((3(π^2)N)/V )^ 2/3 . (a) Using the thermodynamic identity show that the pressure of the gas is given by p = − (∂U/∂V )σ,N . (b) Derive an expression of the degenerated-gas pressure and express your final result in terms of U and V .
Develop an expression to calculate the specific entropy for water vapor assuming an ideal gas. Use...
Develop an expression to calculate the specific entropy for water vapor assuming an ideal gas. Use the second Gibb's equation and the polynomial for specific heat at constant pressure as a function of temperature (Table A-2(c)). Enter this expression into EES separating the temperature dependent term (e.g. standard state entropy) from the pressure dependent term.
Consider an ideal gas of 0.2 mole of argon atoms with an initial volume of 0.8...
Consider an ideal gas of 0.2 mole of argon atoms with an initial volume of 0.8 Liter and a temperature of 300K. a) The gas is thermally isolated and allowed to expand adiabatically to a final volume of 1 Liter. Find the final temperature of the gas after its adiabatic expansion. b) With the gas at the temperature Tf that you calculated in (a), it is now brought into contact with a large thermal reservoir at 300K and equilibriates to...
Consider a system of N distinguishable atoms, each of which can be in only one of...
Consider a system of N distinguishable atoms, each of which can be in only one of two states: the lowest energy state with energy 0, and an excited state with energy ɛ > 0. When there are n atoms in the excited state (and N-1 atoms in the lowest state), the total energy is U = nɛ. 1. Calculate the entropy S/k = ln(Ω(n)) and find the value of n for which it is maximum. 2. Find an expression for...