Question

An object sits on the axis of a converging spherical mirror. It is over twice the...

An object sits on the axis of a converging spherical mirror. It is over twice the distance from the mirror as the focal length. (i.e. the distance to the object is more than 2 times f.) Describe the image by telling how big it is and how far it is from the mirror relative to the object. Tell whether it is upright or upside down and whether it is real or virtual. Explain how you arrived at your answers...

Homework Answers

Answer #1

As we know when object is twice the distance of focal length then image also formed at the same location of object.

But if object is more then twice then image is between f and 2f.

Image is real, upside down and diminished.

All this can be proved by the mirror formula and magnification.

By mirror formula

1/v + 1/u = 1/f

1/v + 1/(-2f) = 1/(-f)

v = - 2f

But if u>2f then by the equation v<2f

As negative so real image.

By magnification = hi/ho = - v/u

As in right side both v and u are negative so overall is positive but there is also a negative sign so hi is negative. So image is upside down.

The ratio v/u is less then one so height of image is less then object. So smaller then object.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Spherical mirrors. Object O stands on the central axis of a spherical mirror. For this situation...
Spherical mirrors. Object O stands on the central axis of a spherical mirror. For this situation object distance is ps = +26 cm, the type of mirror is concave, and then the distance between the focal point and the mirror is 38 cm (without proper sign). Find (a) the radius of curvature r (including sign), (b) the image distance i, and (c) the lateral magnification m. Also, determine whether the image is (d) real or virtual, (e) inverted from object...
Spherical mirrors. Object O stands on the central axis of a spherical mirror. For this situation...
Spherical mirrors. Object O stands on the central axis of a spherical mirror. For this situation object distance is ps = +24 centimeters, the type of mirror is convex, and then the distance between the focal point and the mirror is 40 cm (without proper sign). Find (a) the radius of curvature r (including sign), (b) the image distance i, and (c) the lateral magnification m. Also, determine whether the image is (d) real or virtual, (e) inverted from object...
1. The lateral magnification of an object by a spherical mirror is positive. Which is true?...
1. The lateral magnification of an object by a spherical mirror is positive. Which is true? The image must be a real image. The image could be either a real or virtual image. The image must be a virtual image. 2. Which is true about spherical mirrors? A convex mirror has a positive focal distance. A concave mirror has a negative focal distance. A convex mirror has a negative focal distance. A concave mirror has a positive focal distance. A...
Consider a converging lens whose focal length is 5.47 cm. An object is placed on the...
Consider a converging lens whose focal length is 5.47 cm. An object is placed on the axis of the lens at a distance of 11.7 cm from the lens. 1. How far is the object's image from the lens? In centimeters. 2. If it can be determined, is the image real or virtual? virtual real cannot be determined 3. If it can be determined, is the image upright or inverted with respect to the object? inverted upright cannot be determined
You have a concave spherical mirror with a 12.9 cm radius of curvature. You place an...
You have a concave spherical mirror with a 12.9 cm radius of curvature. You place an object on the mirror's axis, 17.1 cm in front of the mirror. How far is the object's image from the mirror? image distance: If it can be determined, is the image real or virtual? real cannot be determined virtual If it can be determined, is the image upright or inverted with respect to the object? upright cannot be determined inverted
You have a concave spherical mirror with a 10.9-cm radius of curvature. You place an object...
You have a concave spherical mirror with a 10.9-cm radius of curvature. You place an object on the mirror\'s axis, 18.9 cm in front of the mirror. How far is the object's image from the mirror? (in cm) If it can be determined, is the image real or virtual? If it can be determined, is the image upright or inverted with respect to the object?
An object is positioned 21 cm from a spherical concave mirror of unknown focal length. The...
An object is positioned 21 cm from a spherical concave mirror of unknown focal length. The image that is formed is 30 cm from the mirror. (a) Calculate the focal length. (Enter NONE if a particular answer does not exist.) postive image distance cm negative image distance cm (b) Is this answer unique? Yes, there is only one possible focal length. No, there are two possible focal lengths. (c) Is the image real or virtual? The image is real. The...
object of height 25.0 cm is placed 50.0 cm in front of a spherical mirror of...
object of height 25.0 cm is placed 50.0 cm in front of a spherical mirror of focal length 35.0 cm. The image is formed on the opposite side of the mirror. (2 points each) a) Is the image real or virtual, and why? b) Is the mirror concave or convex, and why? c) Is the image upright or inverted, and why? d) What is the image distance? e) What is the image height?
More mirrors. Object O stands on the central axis of a spherical or plane mirror. For...
More mirrors. Object O stands on the central axis of a spherical or plane mirror. For this situation (see the table below, all distances are in centimeters), find (a) the type of mirror, (b) the focal length of the mirror (including sign), (c) the radius of curvature r (nonzero number or 0 if infinity), (d) the image distance i, whether (e)the image is real or virtual, (f) inverted or noninverted from O, and (g) on the same side of the...
12. An object 4.0 cmcm high is placed 17 cmcm in front of a convex mirror...
12. An object 4.0 cmcm high is placed 17 cmcm in front of a convex mirror whose focal length is -10 cm . What is the image distance? 4.1 cmcm -16 cmcm -6.3 cmcm -17 cmcm 24 cmcm 14. An object that is located at the center of curvature of a spherical concave mirror produces which type of image? A real, inverted image A real, upright image A virtual, inverted image A virtual, upright image There is no image for...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT