Question

The spin-lattice relaxation time for a tissue is T1. Find and plot the expression for the...

The spin-lattice relaxation time for a tissue is T1. Find and plot the expression for the magnetization along the z-axis as a function of time after a 180° pulse. At what time the magnetization is zero? Plot the magnetization after a 135° pulse

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3.) Starting with the expression for logistic population growth, determine the expression for the time t1...
3.) Starting with the expression for logistic population growth, determine the expression for the time t1 that it takes for population to grow from No to N1. Express your answer in terms of four variables only: r, K, No, and N1. 4.)The rate of growth of a population is given by dN/dt = 100t. If the total population at t = 10 years is 6000 people, find the population at t = 20 years. This distribution is NOT exponential or...
1. Write a MATLAB function to determine the discrete-time Fourier Transform (H(?)) of the following sequence....
1. Write a MATLAB function to determine the discrete-time Fourier Transform (H(?)) of the following sequence. Plot its magnitude and phase. You can use the dtft command and use the abs, angle and plot commands to plot the results. x(n) = {4, 3, 2, 1, 2, 3, 4}. 2. Analytically determine H(z) and plot its magnitude and phase for the following system using freqz. y(n) = 2x(n) + x(n ? 1) ? 0.25y(n ? 1) + 0.25y(n ? 2). 3....
A mass m = 1.4 kg hangs at the end of a vertical spring whose top...
A mass m = 1.4 kg hangs at the end of a vertical spring whose top end is fixed to the ceiling. The spring has spring constant k = 75 N/m and negligible mass. At time t = 0 the mass is released from rest at a distance d = 0.35 m below its equilibrium height and undergoes simple harmonic motion with its position given as a function of time by y(t) = A cos(ωt – φ). The positive y-axis...
A spool of thread has rolled under the bed! Fortunately, you get the free end of...
A spool of thread has rolled under the bed! Fortunately, you get the free end of it thread. The moment of inertia of a homogeneous, full cylinder about Its axis of symmetry is: ? = (1/2) ?? ^ 2. The moment of inertia of the whole spin about the axis of rotation is: ???? = 15?? ^ 2. The friction between the reel and the floor is  ?? = 0.25 (static) and ?? = 0.2 (dynamic). You start pulling the thread...
The velocity of a particle constrained to move along the x-axis as a function of time...
The velocity of a particle constrained to move along the x-axis as a function of time t is given by: v(t)v(t)=−(−(14/t0)sin(t/t0)/t0)sin(t/t0). Part A: If the particle is at x=8 m when t=0, what is its position at t = 9t0. You will not need the value of t0 to solve any part of this problem. If it is bothering you, feel free to set t0=1everywhere. Part B: Denote instantaneous acceleration of this particle by a(t). Evaluate the expression 8 +v(0)t+a(0)t2/2+v(0)t+a(0)t2/2...
Answer Questions 2 and 3 based on the following LP problem. Let     P1 = number of...
Answer Questions 2 and 3 based on the following LP problem. Let     P1 = number of Product 1 to be produced           P2 = number of Product 2 to be produced           P3 = number of Product 3 to be produced Maximize 100P1 + 120P2 + 90P3         Total profit Subject to         8P1 + 12P2 + 10P3 ≤ 7280       Production budget constraint             4P1 + 3P2 + 2P3 ≤ 1920       Labor hours constraint                                    P1 > 200         Minimum quantity needed...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT