Question

Let's assume that a row of m-mass objects hanging from a ring without resistance and having...

Let's assume that a row of m-mass objects hanging from a ring without resistance and having a length L connecting the object and the ring is small enough to ignore the weight and have no resistance. Answer the following questions.

a) When an object is swaying like a pendulum within a very small angle, present this equation of motion.

b) Use this equation of motion to determine the period of the swaying object.

(c) If a force (F) with a constant period (W') is applied from the outside, obtain a change in the amplitude of the pendulum.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Simple Pendulum with Gravity A pendulum consists of a mass m = 0.08 kg hanging from...
Simple Pendulum with Gravity A pendulum consists of a mass m = 0.08 kg hanging from a flexible string of length L. The string is very thin, very light, and does not stretch. It makes small oscillations, with a period of 0.622 s. What is the oscillation frequency of the pendulum? Neglect any air resistance. What would the period of the pendulum be on the moon's surface? Indicate for each of the following statements whether it is correct or incorrect....
pendulum of mass m= 0.8 kg and length l=1 m is hanging from the ceiling. The...
pendulum of mass m= 0.8 kg and length l=1 m is hanging from the ceiling. The massless string of the pendulum is attached at point P. The bob of the pendulum is a uniform shell (very thin hollow sphere) of radius r=0.4 m, and the length l of the pendulum is measured from the center of the bob. A spring with spring constant k= 7 N/m is attached to the bob (center). The spring is relaxed when the bob is...
1. For a stationary ball of mass m = 0.200 kg hanging from a massless string,...
1. For a stationary ball of mass m = 0.200 kg hanging from a massless string, draw arrows (click on the “Shapes” tab) showing the forces acting on the ball (lengths can be arbitrary, but get the relative lengths of each force roughly correct). For this case of zero acceleration, use Newton’s 2nd law to find the magnitude of the tension force in the string, in units of Newtons. Since we will be considering motion in the horizontal xy plane,...
do all five questions Question 1 20 pts Ignoring the effects of air resistance, if a...
do all five questions Question 1 20 pts Ignoring the effects of air resistance, if a ball falls freely toward the ground, its total mechanical energy Group of answer choices increases remains the same not enough information decreases Flag this Question Question 2 20 pts A child jumps off a wall from an initial height of 16.4 m and lands on a trampoline. Before the child springs back up into the air the trampoline compresses 1.8 meters. The spring constant...