Question

An LR circuit can be used as a "phase shifter." Assume that an "input" source voltage...

An LR circuit can be used as a "phase shifter." Assume that an "input" source voltage V=V0sin(2πft+ϕ) is connected across a series combination of an inductor L = 54 mH and resistor R. The "output" of this circuit is taken across the resistor.

If V_0 = 27 V and f = 105 Hz , determine the value of R so that the output voltage VR lags the input voltage V by 30 ∘.

Express your answer using two significant figures.

R=

  

Ω

Compare (as a ratio) the peak output voltage with V0.

Express your answer using two significant figures.

Voutput/V_0 =

  

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider an LR circuit when a 50.0-Hz 240-V rms ac voltage is applied, where R =...
Consider an LR circuit when a 50.0-Hz 240-V rms ac voltage is applied, where R = 2.30 kΩ , and L = 410 mH . What is the rms current the circuit? Express your answer to three significant figures and include the appropriate units. What is the phase angle between voltage and current? Express your answer using three significant figures. How much power is dissipated? Express your answer to three significant figures and include the appropriate units. What are the...
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source...
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source of amplitude 12 V and frequency 120 Hz. Part (h) With a source voltage of Vsource = V0 cos(2πft), what is the instantaneous voltage, in volts, across the capacitor at time t = 2.25 s? Part (i) What is the amplitude of the voltage drop across the inductor, in volts? Part (j) With a source voltage of Vsource = V0cos(2πft), what is the instantaneous...
An ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude...
An ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude V, a 194-Ω resistor, and a capacitor of capacitance 8.2 μF. What must be the source voltage amplitude V for the average electrical power consumed in the resistor to be 416 W? There is no inductance in the circuit. Express your answer using two significant figures.
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . a. Find the current amplitude across the inductor, the resistor, and the capacitor. b. Find the voltage amplitudes across the inductor, the resistor, and the capacitor. Enter your answers numerically separated by commas. (VL, VR, VC) e. Find new current amplitude across the inductor, the resistor, and...
An LRC series circuit has with R = 105 Ω, L = 76 mH, and C...
An LRC series circuit has with R = 105 Ω, L = 76 mH, and C = 22 μF, is attached to a 120-V (rms) AC power supply with frequency 60 Hz. (a) What is the impedance of the circuit? (b) What is the peak current in the circuit? (c) What is the peak voltage across the resistor? (d) What is the peak voltage across the inductor? (e) What is the peak voltage across the capacitor? (f) What is the...
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage...
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage of 10 V and frequency of 25 kHz. The inductor is 0.50 mH, the capacitor is 0.10 μF, and resistor is 5.0 Ω. a) Determine the impedance b) Determine the voltage across the inductor, capacitor and resistor. c) Determine the phase angle. d) Is the voltage leading or lagging the current?
Now let's apply Z=R2+[ωL−(1/ωC)]2−−−−−−−−−−−−−−−−−√ and tanϕ=X/R to a specific R-L-C circuit. The circuit layout is shown...
Now let's apply Z=R2+[ωL−(1/ωC)]2−−−−−−−−−−−−−−−−−√ and tanϕ=X/R to a specific R-L-C circuit. The circuit layout is shown in (Figure 1). Suppose that its components have values R=300Ω, L=60mH, C=0.50μF, V=50V, and ω=10,000rad/s. Find the reactances XL, XC, and X, the impedance Z, the current amplitude I, the phase angle ϕ, and the voltage amplitude across each circuit element. In a series circuit, suppose R=130Ω, L=350mH, C=0.70μF, V=120V, and ω=4050rad/s. Find the reactance XL. Express your answer in ohms to two significant...
An L-R-C series circuit driven by an AC source has the phasors shown. At the instant...
An L-R-C series circuit driven by an AC source has the phasors shown. At the instant shown in the phasor diagram,  ω t = π 3. If the voltage amplitude across the resistor is VR = 16.00 V, and the voltage amplitude across the inductor is also VL = 16.00 V, then what is the instantaneous voltage across the inductor at the instant shown in the phasor diagram?
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . The current amplitude across the inductor, the resistor, and the capacitor is 0.814A...now, double the frequency and... a. Find new current amplitude across the inductor, the resistor, and the capacitor. b. Find new voltage amplitudes across the inductor, the resistor, and the capacitor.
An LRC series circuit with R = 120 Ω , L = 40 mH , and...
An LRC series circuit with R = 120 Ω , L = 40 mH , and C = 1.5 μF is powered by an ac voltage source of peak voltage V0 = 230 V and frequency f = 440 Hz. Determine the peak voltage across L. Determine the phase angle of the voltage across L relative to the source voltage Determine the peak voltage across C. Determine the phase angle of the voltage across C relative to the source voltage.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT