Question

A. What is the minimum width of a single slit (in microns) that will produce a...

A. What is the minimum width of a single slit (in microns) that will produce a first minimum for a wavelength 549 nm?

B.  Find the wavelength of light in nanometers that has its third minimum at an angle of 2.74º when it falls on a single slit of width 54.8 μm .

C. How wide, microns, is a single slit that produces its first minimum for 515 nm light at an angle of 21.2º?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) Sodium vapor light averaging 589 nm in wavelength falls on a single slit of width...
(a) Sodium vapor light averaging 589 nm in wavelength falls on a single slit of width 3.83 µm. At what angle does it produce its second minimum? (°) (b) What is the highest-order minimum produced?
A. A diffraction grating has 2400 lines per centimeter. At what angle in degrees will the...
A. A diffraction grating has 2400 lines per centimeter. At what angle in degrees will the first-order maximum be for 522 nm wavelength light? B. What is the wavelength of light (in nanometers) falling on double slits separated by 2.34 μm if the third-order maximum is at an angle of 62.5º? C. At what angle, in degrees, is the second minimum for 555 nm light falling on a single slit of width 2.35 μm ? D. Find the distance between...
Light with a wavelength of 460 nm is incident on a single slit with a slit...
Light with a wavelength of 460 nm is incident on a single slit with a slit width of 1.55 mm. A Single Slit Diffraction Pattern is observed on a screen that is 1.55 m away from the slit. What is the angle for the 1st order minimum? What is the angle (in degrees - written as "deg") for the 2nd order minimum? How wide (in mm) is the Central Maximum? How wide (in mm) is the First Maximum that is...
a) How wide in m is a single slit that produces its first minimum for 635-nm...
a) How wide in m is a single slit that produces its first minimum for 635-nm light at an angle of 19.0°? b) At what angle in degrees will the second minimum be?
1. Find the minimum thickness of a soap bubble, in nanometers, that appears red when illuminated...
1. Find the minimum thickness of a soap bubble, in nanometers, that appears red when illuminated by white light perpendicular to its surface. Take the wavelength to be 674 nm, and assume the same index of refraction to be 1.39. 2. At what angle, in degrees, is the second minimum for 487 nm light falling on a single slit of width 1.63 μm ? 3. What is the separation between two slits for which 643 nm orange light has its...
The distance between the first and fifth minima of a single-slit diffraction pattern is 0.400 mm...
The distance between the first and fifth minima of a single-slit diffraction pattern is 0.400 mm with the screen 43.0 cm away from the slit, when light of wavelength 530 nm is used. (a) Find the slit width. (b) Calculate the angle θ of the first diffraction minimum.
Monochromatic light with a 462 nm wavelength passes through a 750 μm wide single slit on...
Monochromatic light with a 462 nm wavelength passes through a 750 μm wide single slit on its way to a viewing screen 2.51 m beyond the slit. A converging lens with focal length f = 4.92 m is placed directly behind the slit. Determine the width of the central maximum with the added lens. You may assume the small angle approximation applies.
24.23: When blue light of wavelength 470 nm falls on a single slit, the first dark...
24.23: When blue light of wavelength 470 nm falls on a single slit, the first dark bands on either side of center are separated by 55.0 ∘. A) Determine the width of the slit.
A single slit, 2000 nm wide, forms a diffraction pattern when illuminated by monochromatic light of...
A single slit, 2000 nm wide, forms a diffraction pattern when illuminated by monochromatic light of 520-nm wavelength. A. What is the largest angle from the central maximum at which the intensity of the light is zero? B. Find the angle at which the fourth minimum of the pattern occurs away from the central maximum
In a single-slit diffraction experiment, there is a minimum of intensity for orange light(λ= 600nm) and...
In a single-slit diffraction experiment, there is a minimum of intensity for orange light(λ= 600nm) and a minimum of intensity for blue light(λ=500 nm) at the same angle of 1.00 mrad. For what minimum slit width is this possible?