Question

The volume of an ideal gas is adiabatically reduced from 200 L to 74.3 L. The...

The volume of an ideal gas is adiabatically reduced from 200 L to 74.3 L. The initial pressure and temperature are 1.00 atm and 300 K. The final pressure is 4.00 atm.

? = 8.314 J/mol.K , ????????? = 1.4, ??????????? = 1.67 and 1 atm = 1.013 × 10^5 Pa. mol.K

(a) Is the gas monatomic or diatomic?

(b) What is the final temperature?

(c) How many moles are in the gas?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The volume of an ideal gas is adiabatically reduced from 217 L to 65.6 L. The...
The volume of an ideal gas is adiabatically reduced from 217 L to 65.6 L. The initial pressure and temperature are 1.70 atm and 300 K. The final pressure is 9.07 atm. (a) Is the gas monatomic, diatomic, or polyatomic? (b) What is the final temperature? (c) How many moles are in the gas?
4. Three moles of a monatomic ideal gas are initially at a pressure of 1.00 atm...
4. Three moles of a monatomic ideal gas are initially at a pressure of 1.00 atm and a temperature of 20.0OC. The gas is compressed adiabatically to a final pressure of 5.00 atm. Find: (a) the initial volume of the gas; (b) the final volume of the gas; (c) the final temperature of the gas; (d) the work done by the gas during the compression. Answers: (a) 72.1 L; (b) 27.5 L; (c) 285 OC; (d) -97.8 atm-L Please show...
A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of...
A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of 5.04 atm and a volume of 13.0 L to a final volume of 31.0 L. (a) What is the final pressure of the gas? atm (b) What are the initial and final temperatures? initial K final K (c) Find Q for the gas during this process. kJ (d) Find ΔEint for the gas during this process. kJ (e) Find W for the gas during...
The volume of a monatomic ideal gas doubles in an adiabatic expansion. Considering 115 moles of...
The volume of a monatomic ideal gas doubles in an adiabatic expansion. Considering 115 moles of gas with an initial pressure of 350 kPa and an initial volume of 1.4 m3 . Find the pressure of the gas after it expands adiabatically to a volume of 2.8 m3 . Pf= 110 kPa Find the temperature of the gas after it expands adiabatically to a volume of 2.8 m3 .
A two mole sample of an ideal diatomic gas expands slowly and adiabatically from a pressure...
A two mole sample of an ideal diatomic gas expands slowly and adiabatically from a pressure of 5 atm. and a volume of 10 liters up to a final volume of 30 liters. a) What is the final pressure of the gas ?, b) Whatis the heat, work and internal energy?
An ideal gas with γ = 1.400 expands adiabatically from a pressure of 365.0 Pa and...
An ideal gas with γ = 1.400 expands adiabatically from a pressure of 365.0 Pa and a volume of 70.00 m3 , doing 101.0 J of work while expanding to a final volume. What is its final pressure-volume product?
1. An ideal monatomic gas, with 24.05 moles, expands adiabatically from 0.500m^3 to 1.75 m^3. IF...
1. An ideal monatomic gas, with 24.05 moles, expands adiabatically from 0.500m^3 to 1.75 m^3. IF the initial pressure and temperature are 1.40x10^5 Pa and 350K, respectively, find the change in internal energy of the gas if the final temperature of the gas is 152K. 2. A fridge does 17.5 KJ of work while moving 120KJ of thermal energy from inside the fridge. Calculate the fridge's coefficient of performance.
An ideal gas with ? = 1,68 is initially at 4°C in a volume of 9,5...
An ideal gas with ? = 1,68 is initially at 4°C in a volume of 9,5 L at a pressure of 1 atm. It is then expanded adiabatically to a volume of 11,3 L. What is the final temperature (°C ) of the gas? Thanks :)
An ideal monatomic gas at 405 K expands adiabatically and reversibly to three times its volume....
An ideal monatomic gas at 405 K expands adiabatically and reversibly to three times its volume. What is its final temperature (in K)?
2.50 mol of a diatomic ideal gas expands adiabatically and quasi-statically. The initial temperature of the...
2.50 mol of a diatomic ideal gas expands adiabatically and quasi-statically. The initial temperature of the gas is 325 K. The work done by the gas during expansion is 7.50 kJ. (a) What is the final temperature of the gas? K (b) Compare your result to the result you would get if the gas were monatomic. (Calculate the final temperature if the gas were monatomic.) K