Question

An electric circuit consists of a capacitor C, coil of inductance L, and a switch. In...

An electric circuit consists of a capacitor C, coil of inductance L, and a switch. In the initial state the capacitor is charged with the voltage V and the switch is off. Then the circuit is switched on. What is the rate of change of the current delta I/ delta t at the initial moment? What physical phenomenon will take place then? What is the maximal current in the circuit?

Homework Answers

Answer #1

In the initial moment, the inductor will behave as a open circuit so no current will flow through it. In this case ,

At t=0,

Now for Io, we conserve the total energy, So, we have,

Also, we know that,

So, finally we have,

We have already calculated the maximum current that is,

This phenomenon is called as LC- oscillation. The capacitor will gets discharged causing a current in the circuit. The inductor will oppose this change and after some times, the current will revert, therby charging the capacitor once more. So, the charge on capacitor becomes current in the inductor and vice versa. Thus, the name LC- oscillation.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the current in a circuit consisting of a coil and capacitor in series, if the...
Find the current in a circuit consisting of a coil and capacitor in series, if the applied voltage v= 120 volts, frequency f = 60 Hz; the inductance of the coil is L = 0.30 henry; the resistance of the coil is R = 40 ohms; and the capacitance of the capacitor is C= 2 µf. (b) Find the power used in the circuit.
A series L-C-R circuit contains a 5.00 μF capacitor, a 0.900 H coil, a 190 Ohms...
A series L-C-R circuit contains a 5.00 μF capacitor, a 0.900 H coil, a 190 Ohms resistor, and a generator producing a maximum voltage of 30.0 V at an angular frequency of 220 rad/s. a. Calculate the impedance of the circuit. b. Calculate the maximum current in the circuit. c. Calculate the maximum voltage drop across the resistor, the capacitor, and the inductor. d. Does the current in this circuit lead the voltage or does the voltage lead the current?...
An ideal L-C circuit (zero resistance) includes an inductor with inductance L and a capacitor with...
An ideal L-C circuit (zero resistance) includes an inductor with inductance L and a capacitor with capacitance C, maximum charge on the capacitor Q, and a oscillation period T. If we change out the inductor for one with an inductance 4L, and we reduce the maximum charge on the capacitor to Q/2, what is the new period of the L-C circuit?
An L-C circuit consists of a 69.5-mH inductor and a 240-µF capacitor. The initial charge on...
An L-C circuit consists of a 69.5-mH inductor and a 240-µF capacitor. The initial charge on the capacitor is 5.95 µC, and the initial current in the inductor is zero. (a) What is the maximum voltage across the capacitor? __________ V (b) What is the maximum current in the inductor? __________ A (c) What is the maximum energy stored in the inductor? __________ J (d) When the current in the inductor has half its maximum value, what is the charge...
1. A R-L circuit consists of one resistance 2.0 Ohm and one unknown Inductance. A voltage...
1. A R-L circuit consists of one resistance 2.0 Ohm and one unknown Inductance. A voltage v=54 sin(399 t) is applied to this circuit and measured current is 2.77 A. Find out the unknown Inductance in mH unit. 2. In a R-L-C AC circuit, R= 7 Ohm, ZL= j 8 Ohm, ZC= -j 15 Ohm. Supply voltage is v= 15 sin( 7 t). Calculate the ANGLE of Z.
Imagine you have a circuit that consists of an open switch, a 0.020 F capacitor, a...
Imagine you have a circuit that consists of an open switch, a 0.020 F capacitor, a 0.090 H inductor, and a 4.00 Ω resistor all in series. The capacitor was charged all the way up with a 9.0 V battery before the capacitor was placed into the circuit and the battery was removed completely. If the switch is closed (completing the circuit) at t=0 s, find the energy stored in the magnetic field within the inductor when t = 30.0...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . The current amplitude across the inductor, the resistor, and the capacitor is 0.814A...now, double the frequency and... a. Find new current amplitude across the inductor, the resistor, and the capacitor. b. Find new voltage amplitudes across the inductor, the resistor, and the capacitor.
An RC circuit consists of a 3.00 V battery attached to a 50.0 uF capacitor in...
An RC circuit consists of a 3.00 V battery attached to a 50.0 uF capacitor in series with a 100.0 kilo-Ohm resistor. The circuit has a switch that is initially open (no initial charge on the capacitor). A: find the current through the circuit immediately after the switch is closed B: find the current 12 seconds after the switch is closed.
7) A circuit consists of a capacitor (capacitance of 1μF) and a resistor (resistance 1000 Ω)...
7) A circuit consists of a capacitor (capacitance of 1μF) and a resistor (resistance 1000 Ω) in series, with a battery supplying a potential difference of 12.0 V. At time t=0 a switch is closed to allow current to flow in the circuit for the first time. Remember that the potential difference supplied by the battery ε is not the same as the potential across the capacitor ΔV unless a lot of time has elapsed. Also an RC circuit is...
An RC circuit consists of a resistor of 4 MΩ in series with a 5μF capacitor...
An RC circuit consists of a resistor of 4 MΩ in series with a 5μF capacitor and a battery of Ɛ= 9 V and a switch. At t = 0 s, the switch is closed and the capacitor is allowed to charge. a) Calculate the charge on the capacitor plates after 5 seconds. b) Calculate the voltage across the capacitor and the resistor after 5 seconds. c) Calculate the current flowing through the resistor after 5 seconds. d) How long...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT