Question

A 2.0 kg stone slides from rest down a hill 5.0 m high and is observed...

A 2.0 kg stone slides from rest down a hill 5.0 m high and is observed to be moving at 6.0 m/s at the bottom. During this process, how much thermal energy have been produced due to the friction?

Homework Answers

Answer #1

Given,

Mass of the stone ,m=2 kg

Height ,h=5 m

And Velocity ,v =6 m/s

Where gravitational acceleration ,

Potential energy ,  

  

Since stone moves down from rest ,so gravitational potential energy will converted to thermal kinetic energy.

Kinetic energy ,

So Thermal energy will be produced is

Thermal energy

=98-36

=62 J

Answer : 62 J Thermal energy have been produced due to friction.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 5.0 kg box slides down a 5.0 m high frictionless hill, starting from rest, across...
A 5.0 kg box slides down a 5.0 m high frictionless hill, starting from rest, across a 2.0 m wide horizontal surface, then hits a horizontal spring with spring constant 500 N/m. The ground under the spring is frictionless, but the 2.0 m wide horizontal surface is rough with a coefficient of kinetic friction of 0.25. a. What is the speed of the box just before reaching the rough surface? b. What is the speed of the box just before...
During a rockslide, a 360 kg rock slides from rest down a hillside that is 500...
During a rockslide, a 360 kg rock slides from rest down a hillside that is 500 m along the slope and 250 m high. The coefficient of kinetic friction between the rock and the hill surface is 0.30. (a) If the gravitational potential energy U of the rock-Earth system is zero at the bottom of the hill, what is the value of U just before the slide? (b) How much energy is transferred to thermal energy during the slide? (c)...
A child with mass m = 16.6 kg slides down a slide 4.50 m high, and...
A child with mass m = 16.6 kg slides down a slide 4.50 m high, and reaches the bottom with a speed of 1.00 m/s. How much thermal energy (in Joules) was generated in the process? Answer to two decimal places.
During a rockslide, a 700kg rock slides from rest down a hillside that is 740m along...
During a rockslide, a 700kg rock slides from rest down a hillside that is 740m along the slope and 260m high. The coefficient of kinetic friction between the rock and the hill surface is 0.21. (a) If the gravitational potential energy U of the rock-earth system is zero at the bottom of the hill, what is the value of U just before the slide? (b) How much energy is transferred to thermal energy during the slide? (c) What is the...
A 25 kg bear slides from rest 12 m down a lodge-pole pine tree moving with...
A 25 kg bear slides from rest 12 m down a lodge-pole pine tree moving with a speed of 5.6 m/s at the bottom. (g = 9.8 m/s2.) a. What is the gravitational potential energy of the bear at the top, if the bottom of the tree is assumed to have zero gravitational potential energy? b.What is the bear’s kinetic energy at the bottom? c.  Determine the work done by friction, by calculating what the bear’s kinetic energy would be with...
A box with 11 kg of mass slides down an inclined plane that is 2.0 m...
A box with 11 kg of mass slides down an inclined plane that is 2.0 m high and 3.5 m long. Due to friction the box reaches 3.3 m/s at the bottom of the inclined plane. Beyond the inclined plane lies a spring with 650 N/m constant. It is fixed at its right end. The level ground between the incline and the spring has no friction The box compressed the spring, got pushed back towards the incline by the spring....
A 4.5 kg box slides down a 4.8-m -high frictionless hill, starting from rest, across a...
A 4.5 kg box slides down a 4.8-m -high frictionless hill, starting from rest, across a 2.0-m -wide horizontal surface, then hits a horizontal spring with spring constant 520 N/m . The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 2.0-m-long horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.24. Part A What is the speed of the box just before...
A 55.8 kg person skis down a 10 m tall hill. They start from rest at...
A 55.8 kg person skis down a 10 m tall hill. They start from rest at the top of the hill, but friction and air resistance both affect the skiers motion. If friction and air resistance have the effect of dissipating 1,027 J of energy away from the skier over the entire length of the hill, how fast are they traveling when they reach the bottom? Report your answer in meters per second, rounded to one decimal place
A 5.0-kg package slides 4 m down the incline of a ramp sloped at 20˚. The...
A 5.0-kg package slides 4 m down the incline of a ramp sloped at 20˚. The coefficient of kinetic friction increases linearly along the surface of the ramp, from 0 at the top to 0.32 at the bottom. 1) Calculate the work done on the package by gravity. 2) Calculate the work done on the package by friction. 3) Calculate the work done on the package by the normal force. 4) If the package had a speed of 3.7 m/s...
Beginning from rest, an object of mass 200 kg slides down a 9-m-long ramp. The ramp...
Beginning from rest, an object of mass 200 kg slides down a 9-m-long ramp. The ramp is inclined at an angle of 20o from the horizontal. Air resistance and friction between the object and the ramp are negligible. Let g = 9.81 m/s2. Determine the kinetic energy of the object, in kJ, and the velocity of the object, in m/s, at the bottom of the ramp.