Question

What is the relation between atomic radius r and lattice constant a in the case of...

What is the relation between atomic radius r and lattice constant a in the case of face- centered cubic (FCC) structure? State the number of atoms in a unit cell for FCC structure and hence deduce the atomic packing factor.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A certain material has a FCC crystal structure with an atomic radius of 1.44 A° (1...
A certain material has a FCC crystal structure with an atomic radius of 1.44 A° (1 A° = 10-8 cm), and an atomic mass of 197. Calculate: a) The lattice constant ‘a’ of unit cell in cm, b) The atomic packing factor of the material.
Hetero atom (1) calculate radius of atom which forms simple cubic crystal structure. Lattice constant=4.0Å (2)...
Hetero atom (1) calculate radius of atom which forms simple cubic crystal structure. Lattice constant=4.0Å (2) calculate radius of atom which forms HCP crystal structure. Lattice constant a=3.0Å (3) calculate nuclear distance of body-centered tetragonal(Lattice constant a=b=5Å, c=6Å), and atomic packing factor.
Calculate the atomic packing factor (APF) for the following: (a) simple cubic unit cell with 1...
Calculate the atomic packing factor (APF) for the following: (a) simple cubic unit cell with 1 atom per lattice point (b) BCC unit cell with 1 atom per lattice point (c) FCC unit cell with 1 atom per lattice point
Iron (Fe) crystallizes in a body-centered cubic structure with a lattice constant of 0.287 nm: Use...
Iron (Fe) crystallizes in a body-centered cubic structure with a lattice constant of 0.287 nm: Use drawing to show how the iron atoms are packed in the unit cell. How many iron atoms are contained in each unit cell?         Use drawings to show how the iron atoms are arranged on the (100) and (110) planes.                    Determine the density of iron (g/cm3) by dividing the total mass of iron atoms in the unit cell by the volume of the unit cell....
Iron (Fe) crystallizes in a body-centered cubic structure with a lattice constant of 0.287 nm: a....
Iron (Fe) crystallizes in a body-centered cubic structure with a lattice constant of 0.287 nm: a. Use drawing to show how the iron atoms are packed in the unit cell. How many iron atoms are contained in each unit cell?         b. Use drawings to show how the iron atoms are arranged on the (100) and (110) planes.        c. Determine diameter of iron atom    d. Determine the density of iron (g/cm3) by dividing the total mass of iron atoms in...
Iron (Fe) crystallizes in a body-centered cubic structure with a lattice constant of 0.287 nm: a....
Iron (Fe) crystallizes in a body-centered cubic structure with a lattice constant of 0.287 nm: a. Use drawing to show how the iron atoms are packed in the unit cell. How many iron atoms are contained in each unit cell?         b. Use drawings to show how the iron atoms are arranged on the (100) and (110) planes.        c. Determine diameter of iron atom    d. Determine the density of iron (g/cm3) by dividing the total mass of iron atoms in...
Germanium has a lattice constant of 0.565 nm.    a) Draw the portion of the (110) plane...
Germanium has a lattice constant of 0.565 nm.    a) Draw the portion of the (110) plane that resides inside a cubic unit cell flat on the page. Label the lengths of the edges. Show the arrangement of atoms whose centers lie on the plane and label the distances between the centers of the nearest neighbor atoms on the plane. Determine the value of the atomic radius. b) Calculate the planar atomic density of atoms on the (110) plane in atoms/cm2....
1) For a metal that has the face-centered cubic (FCC) crystal structure, calculate the atomic radius...
1) For a metal that has the face-centered cubic (FCC) crystal structure, calculate the atomic radius if the metal has a density of (8.000x10^0) g/cm3 and an atomic weight of (5.80x10^1) g/mol.  Express your answer in nm. 2) Consider a copper-aluminum solid solution containing (7.82x10^1) at% Al. How many atoms per cubic centimeter (atoms/cm^3) of copper are there in this solution? Take the density of copper to be 8.94 g/cm3 and the density of aluminum to be 2.71 g/cm3.
Chromium metal crystallizes as a body-centered cubic lattice. If the atomic radius of Cr is 1.25...
Chromium metal crystallizes as a body-centered cubic lattice. If the atomic radius of Cr is 1.25 angstroms, what is the density of Cr metal in g/cm3?
Calculate the density of Ca (s) in a face centered cubic unit cell. (The atomic radius...
Calculate the density of Ca (s) in a face centered cubic unit cell. (The atomic radius of Ca is 1.97 Å)