Question

water flows steadily from the left pipe section (radius r1 = 2.00R), through the middle section...

water flows steadily from the left pipe section (radius r1 = 2.00R), through the middle section (radius R = 0.0106 m), and into the right section (radius r3 = 3.00R). The speed of the water in the middle section is 0.402 m/s. What is the net work done on 0.310 m3 of the water as it moves from the left to the right section?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A water pipe tapers down from an initial radius of R1 = 0.23 m to a...
A water pipe tapers down from an initial radius of R1 = 0.23 m to a final radius of R2 = 0.08 m. The water flows at a velocity v1 = 0.83 m/s in the larger section of pipe. Using this water supply, how long would it take to fill up a swimming pool with a volume of V = 153 m3? (give your answer in minutes) 4) The water pressure in the center of the larger section of the...
A water pipe tapers down from an initial radius of R1 = 0.2 m to a...
A water pipe tapers down from an initial radius of R1 = 0.2 m to a final radius of R2 = 0.09 m. The water flows at a velocity v1 = 0.86 m/s in the larger section of pipe. 1. Using this water supply, how long would it take to fill up a swimming pool with a volume of V = 130 m3? (give your answer in minutes) 2. The water pressure in the center of the larger section of...
In the figure, water flows through a horizontal pipe and then out into the atmosphere at...
In the figure, water flows through a horizontal pipe and then out into the atmosphere at a speed v1 = 16.0 m/s. The diameters of the left and right sections of the pipe are 4.70 cm and 3.20 cm. (a) What volume of water flows into the atmosphere during a 10 min period? In the left section of the pipe, what are (b) the speed v2 and (c) the gauge pressure?
In the figure, water flows through a horizontal pipe and then out into the atmosphere at...
In the figure, water flows through a horizontal pipe and then out into the atmosphere at a speed v1 = 15.0 m/s. The diameters of the left and right sections of the pipe are 4.70 cm and 3.20 cm. (a) What volume of water flows into the atmosphere during a 10 min period? In the left section of the pipe, what are (b) the speed v2 and (c) the gauge pressure?
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is 1.65 ✕ 105 Pa and the pipe radius is 2.80 cm. At the higher point located at y = 2.50 m, the pressure is 1.27 ✕ 105 Pa and the pipe radius is 1.30 cm. (a) Find the speed of flow in the lower section. m/s (b) Find the speed of flow in the upper section. m/s (c)...
Water flows through a circular pipe with a radius of 10 cm at 12 m/s. (a)...
Water flows through a circular pipe with a radius of 10 cm at 12 m/s. (a) If the radius of the pipe increases to 20 cm, what is the new speed of the water in the pipe? (b) Does the volume flow rate or the mass flow rate change in the pipe? (c) Calculate both the volume flow rate and mass flow rate in the pipe?
Assume that water flowing through a pipe with a circular cross section flows most rapidly at...
Assume that water flowing through a pipe with a circular cross section flows most rapidly at the center of the pipe and least rapidly near the pipe walls (this might be reasonable because of friction between the water and the pipe walls). Assume that the water speed at the walls is half as great as the speed at the center, and assume that the decrease is linear (i.e. the graph of water speed versus radius is a straight line). If...
A liquid of density 1.33 × 103 kg/m3 flows steadily through a pipe of varying diameter...
A liquid of density 1.33 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.15 m/s and the pipe diameter is 11.5 cm. At location 2 the pipe diameter is 17.3 cm. At location 1 the pipe is 9.89 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.
A liquid of density 1.19 × 103 kg/m3 flows steadily through a pipe of varying diameter...
A liquid of density 1.19 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.79 m/s and the pipe diameter is 10.7 cm. At location 2 the pipe diameter is 14.1 cm. At location 1 the pipe is 8.75 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.
A liquid of density 1.37 × 103 kg/m3 flows steadily through a pipe of varying diameter...
A liquid of density 1.37 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.47 m/s and the pipe diameter is 11.1 cm. At location 2 the pipe diameter is 17.1 cm. At location 1 the pipe is 9.37 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT