Question

A 600 nm laser shines through a double slit in which the two slits are 0.8...

A 600 nm laser shines through a double slit in which the two slits are 0.8 mm apart, and each slit is 0.1 mm wide. Sketch what the pattern would look like on a screen 3 m away and indicate the central maximum. How many bright spots lie between the first single-slit minimums on either side? How far away is that first single-slit minimum from the center of the pattern? (you may assume the small angle approximations)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A 680 nm laser illuminates a double slit apparatus with a slit separation distance of...
1. A 680 nm laser illuminates a double slit apparatus with a slit separation distance of 7.83 μm. On the viewing screen, you measure the distance from the central bright fringe to the 2nd bright fringe to be 88.2 cm. How far away (in meters) is the viewing screen from the double slits?   2. A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double...
a) A double slit experiment is with 450 nm light and two narrow slits which are...
a) A double slit experiment is with 450 nm light and two narrow slits which are 0.5 mm apart. At what angle to the straight through beam will be one observe: i. the third order bright fringe. ii. the second minimum from the central maximum. b) By drawing appropriate diagrams, show the differences between intensity or pattern for double slits intereference and single slit diffration
A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55...
A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double slits. What is the distance (in meters) from the central bright fringe to the 3nd dark fringe?
2. If 725-nm and 650-nm light passes through two slits 0.63 mm apart, how far apart...
2. If 725-nm and 650-nm light passes through two slits 0.63 mm apart, how far apart are the second-order fringes for these two wavelengths on a screen 1.3 m away? Express your answer to two significant figures and include the appropriate units 7. A single slit 1.1 mm wide is illuminated by 420nm light. What is the width of the central maximum (in cm ) in the diffraction pattern on a screen 3.0 mm away? Express your answer using two...
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits...
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits are separated by 8 mm, and the interference pattern is projected onto a screen 7 m away from the slits. The central bright fringe is at a certain spot on the screen. Using a ruler with one end placed at the central fringe, you move along the ruler passing by two more bright fringes and find that the next bright fringe is 23.5 mm...
A double slit interference pattern is created by two narrow slit spaced 0.025 mm apart on...
A double slit interference pattern is created by two narrow slit spaced 0.025 mm apart on a screen 2 m away from the slits. a. If the seventh bright fringe on the detector is 10 cm away from the central fringe, what is the wavelength of light (in nm) used in this experiment? b. What is the angle of the diffraction order?
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm wide. The diffraction pattern is observed on a screen 2.55 m away. Define the width of a bright fringe as the distance between the minima on either side. a) What is the width of the central bright fringe? b) What is the width of the first bright fringe on either side of the central one?
Two narrow slits are illuminated by a laser with a wavelength of 578 nm. The interference...
Two narrow slits are illuminated by a laser with a wavelength of 578 nm. The interference pattern on a screen located x = 4.50 m away shows that the third-order bright fringe is located y = 9.10 cm away from the central bright fringe. Calculate the distance between the two slits. First you have to calculate the angle of the maximum. Then you can use the formula for bright fringes of double slits. Incorrect. Tries 2/20 Previous Tries The screen...
Using a 697-nm wavelength laser, you form the diffraction pattern of a 0.105-mm wide slit on...
Using a 697-nm wavelength laser, you form the diffraction pattern of a 0.105-mm wide slit on a screen. You measure on the screen that the 11th dark fringe is 9.19 cm away from the center of the central maximum. How far is the screen located from the slit?
In Young's experiment a mixture of orange light (611 nm) and blue light (471 nm) shines...
In Young's experiment a mixture of orange light (611 nm) and blue light (471 nm) shines on the double slit. The centers of the first-order bright blue fringes lie at the outer edges of a screen that is located 0.720 m away from the slits. However, the first-order bright orange fringes fall off the screen. By how much and in which direction (toward or away from the slits) should the screen be moved, so that the centers of the first-order...