Question

A net electric charge of 2.87 ?C is placed on a conducting sphere. The radius of...

A net electric charge of 2.87 ?C is placed on a conducting sphere. The radius of the sphere is R = 20.5 cm. What is the magnitude of the electric field at a distance of d1 = 26.8 cm away from the center of the sphere?

Tries 0/12

What is the magnitude of the electric field at a distance of d2 = 14.2 cm away from the center of the sphere?

Tries 0/12

The same amount of electric charge is now placed on an insulating sphere with the same radius R. The electric charge is distributed uniformly throughout the volume of the insulating sphere. What is the magnitude of the electric field at a distance of d1 = 26.8 cm away from the center of the sphere?

Tries 0/12

What is the magnitude of the electric field at a distance of d2 = 14.2 cm away from the center of the insulating sphere?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solid, nonconducting sphere of radius R = 6.0cm is charged uniformly with an electrical charge...
A solid, nonconducting sphere of radius R = 6.0cm is charged uniformly with an electrical charge of q = 12µC. it is enclosed by a thin conducting concentric spherical shell of inner radius R, the net charge on the shell is zero. a) find the magnitude of the electrical field E1  inside the sphere (r < R) at the distance r1 = 3.0 cm from the center. b) find the magnitude of the electric field E2 outside the shell at the...
A solid copper sphere has a radius of R and holds a net charge of +Q....
A solid copper sphere has a radius of R and holds a net charge of +Q. You measure outward a distance of D from the center of the sphere. (assume D>R) You measure the magnitude of the electric field at distance D. You then measure out to a distance of 3D from the center of the sphere and measure again. How does the magnitude of the electric field at distance 3D compare to that of D?
Immediately outside a conducting sphere of unknown charge Q and radius R the electric potential is...
Immediately outside a conducting sphere of unknown charge Q and radius R the electric potential is 190 V, and 10.0 cm further from the sphere, the potential is 130 V. (a) Determine the radius R of the sphere (in cm). cm (b) Determine the charge Q on the sphere (in nC). nC (c) The electric potential immediately outside another charged conducting sphere is 220 V, and 10.0 cm farther from the center the magnitude of the electric field is 410...
A nonconducting solid sphere of radius 2.80 cm carries a uniformly distributed positive charge of 6.60×10-9...
A nonconducting solid sphere of radius 2.80 cm carries a uniformly distributed positive charge of 6.60×10-9 C. Calculate the magnitude of the electric field at a point 1.60 cm away from the center of the sphere. Calculate the magnitude of the electric field at a point 3.60 cm away from the center of the sphere. Assume that the sphere is conducting. Calculate the magnitude of the electric field at a point 1.60 cm away from the center of the sphere....
A conducting sphere with a radius of R = 9.3 mm has a uniform and constant...
A conducting sphere with a radius of R = 9.3 mm has a uniform and constant surface charge density of teta= 10 nC / m2. What will be the magnitude of the electric field produced by that sphere at a distance from the center of the sphere der = 23.5 cm?
Consider an insulating sphere of radius 5 cm surrounded by a conducting sphere of inner radius...
Consider an insulating sphere of radius 5 cm surrounded by a conducting sphere of inner radius 22 cm and outer radius 25 cm. Furthermore, suppose that the electric field at a point 13 cm from the center is measured to be 1540 N/C radially inward while the electric field at a point 44 cm from the center is 90 N/C radially outward. 1. Find the charge on the insulating sphere. Answer in units of C. 2.Find the net charge on...
A positive charge +Q is distributed uniformly throughout the volume of an insulating sphere with radius...
A positive charge +Q is distributed uniformly throughout the volume of an insulating sphere with radius R. Find the electric potential V at a point P a distance r from the center of the sphere. Plot the electric potential V vs. the distance r from the center of the sphere for 0 < r < 2R
A solid nonconducting sphere of radius R = 5.82 cm has a nonuniform charge distribution of...
A solid nonconducting sphere of radius R = 5.82 cm has a nonuniform charge distribution of volume charge density ρ = (13.3 pC/m3)r/R, where r is radial distance from the sphere's center. (a) What is the sphere's total charge? 8.23e-15 C (b) What is the magnitude E of the electric field at r = 0? (Use any variable or symbol stated above along with the following as necessary: ε0.) E = 0     (c) What is the magnitude E of...
At a distance of 0.206 cm from the center of a charged conducting sphere with radius...
At a distance of 0.206 cm from the center of a charged conducting sphere with radius 0.100cm, the electric field is 430 N/C . What is the electric field 0.586 cmfrom the center of the sphere? At a distance of 0.186 cm from the axis of a very long charged conducting cylinder with radius 0.100cm, the electric field is 430 N/C . What is the electric field 0.604 cm from the axis of the cylinder? At a distance of 0.190...
An isolated charged conducting sphere has a radius R = 11.0 cm. At a distance of...
An isolated charged conducting sphere has a radius R = 11.0 cm. At a distance of r = 25.0 cm from the center of the sphere the electric field due to the sphere has a magnitude of E = 4.90 ✕ 104 N/C. (a) What is its surface charge density (in µC/m2)? ___ µC/m2 (b) What is its capacitance (in pF)? ____ pF (c) What If? A larger sphere of radius 23.0 cm is now added so as to be...