Question

n = 4.42 mol of Hydrogen gas is initially at T = 304.0 K temperature and...

n = 4.42 mol of Hydrogen gas is initially at T = 304.0 K temperature and pi = 3.23×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 8.93×105 Pa. What is the volume of the gas at the end of the compression process?

Tries 0/12

How much work did the external force perform?

Tries 0/12

How much heat did the gas emit?

Tries 0/12

How much entropy did the gas emit?

Tries 0/12

What would be the temperature of the gas, if the gas was allowed to adiabatically expand back to its original pressure?

Homework Answers

Answer #1

Please upvote if you have understood the solution. Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
n = 3.50 mol of Hydrogen gas is initially at T = 309.0 K temperature and...
n = 3.50 mol of Hydrogen gas is initially at T = 309.0 K temperature and pi = 2.34×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 8.91×105 Pa. 1. What is the volume of the gas at the end of the compression process?   1.01×10-2 m^3 2. How much work did the external force perform? 3. How much heat did the gas emit? 4. How much entropy did the gas emit? 5....
n = 2.58 mol of Hydrogen gas is initially at T = 376 K temperature and...
n = 2.58 mol of Hydrogen gas is initially at T = 376 K temperature and pi = 1.88×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 8.78×105 Pa. What is the volume of the gas at the end of the compression process? What would be the temperature of the gas, if the gas was allowed to adiabatically expand back to its original pressure?
n = 3.50 mol of Hydrogen gas is initially at T = 310 K temperature and...
n = 3.50 mol of Hydrogen gas is initially at T = 310 K temperature and pi = 3.22×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 7.51×105 Pa. What is the volume of the gas at the end of the compression process??
You have 1.25 mol of hydrogen gas (CV = 5R/2 and Cp= 7R/2) at absolute temperature...
You have 1.25 mol of hydrogen gas (CV = 5R/2 and Cp= 7R/2) at absolute temperature 325 K. You allow the gas to expand adiabatically to a final temperature of 195 K. 1) How much work does the gas do while being compressed? 2) What is the ratio of its final volume to its initial volume? 3) What is the ratio of the final gas pressure to the initial gas pressure?
In this problem, 1.10 mol of an ideal gas at 300 K undergoes a free adiabatic...
In this problem, 1.10 mol of an ideal gas at 300 K undergoes a free adiabatic expansion from V1 = 12.3 L to V2 = 22.2 L. It is then compressed isothermally and reversibly back to its original state. (a) What is the entropy change of the universe for the complete cycle? J/K   (b) How much work is lost in this cycle? J
You are given an ideal monatomic gas of N = 1.00 × 1023 atoms at temperature...
You are given an ideal monatomic gas of N = 1.00 × 1023 atoms at temperature T = 300K, and volumeV = 20 L. Find: (a) The pressure in the gas in Pa. (b) The work done in Joules when the gas is compressed slowly and isothermally to half its volume. (c) The change in internal energy of the gas in Joules during process (b). (d) The heat (in J) absorbed or given up by the gas during process (b)....
A gas bottle contains 4.90×1023 Hydrogen molecules at a temperature of 368.0 K. What is the...
A gas bottle contains 4.90×1023 Hydrogen molecules at a temperature of 368.0 K. What is the thermal energy of the gas? (You might need to know Boltzmann's constant: kB = 1.38×10-23 J/K.) Tries 0/12 How much energy is stored in ONE degree of freedom for the whole system? Tries 0/12 What is the average energy of a single molecule? Tries 0/12 On average how much energy is stored by ONE degree of freedom for ONE single molecule?
A closed, cylindrical piston contains an ideal gas initially at a volume of 1.00L, temperature of...
A closed, cylindrical piston contains an ideal gas initially at a volume of 1.00L, temperature of 25.0ºC and internal pressure of 1.00 bar. The gas is compressed by applying an external pressure of 1.5bar to a volume of 0.200L. a. (20 pts) What is the work done in compressing the gas? b. (15 pts) If the above piston had diathermal walls and the process occurred isothermally, how much heat would be exchanged? Show steps and Ill rate! Thanks for the...
A cylinder containing an ideal gas has a volume of 2.6 m3 and a pressure of...
A cylinder containing an ideal gas has a volume of 2.6 m3 and a pressure of 1.5× 105 Pa at a temperature of 300 K. The cylinder is placed against a metal block that is maintained at 900 K and the gas expands as the pressure remains constant until the temperature of the gas reaches 900 K. The change in internal energy of the gas is +6.0× 105 J. How much heat did the gas absorb? a. 1.4E+6 J b....
ir is mostly a mixture of diatomic oxygen and nitrogen; treat it as an ideal gas...
ir is mostly a mixture of diatomic oxygen and nitrogen; treat it as an ideal gas with ?=1.40, ?v =20.8J⋅mol−1⋅K−1. Theuniversalgasconstantis?=8.315J⋅mol−1 K−1. The compression ratio of a diesel engine is 15:1, meaning that air in the cylinders is compressed to 1/15 of its initial volume. If the initial pressure is 1.01 × 105 Pa and the initial temperature is 300 K, find: i) The final temperature after adiabatic compression. ii) The final pressure after adiabatic compression. iii) How much work...