Question

A particle moves along the x axis. It is initially at the position 0.150 m, moving...

A particle moves along the x axis. It is initially at the position 0.150 m, moving with velocity 0.080 m/s and acceleration -0.340 m/s2. Suppose it moves with constant acceleration for 5.60 s. (c) Find its position (d) Find its velocity at the end of this time interval.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle moves along the x axis. It is initially at the position 0.150 m, moving...
A particle moves along the x axis. It is initially at the position 0.150 m, moving with velocity 0.080 m/s and acceleration -0.340 m/s2. Suppose it moves with constant acceleration for 5.60 s. (a) Find the position of the particle after this time. (b) Find its velocity at the end of this time interval. Next, assume it moves with simple harmonic motion for 5.60 s and x = 0 is its equilibrium position. (Assume that the velocity and acceleration is...
A particle moves along the x axis. It is initially at the position 0.340 m, moving...
A particle moves along the x axis. It is initially at the position 0.340 m, moving with velocity 0.240 m/s and acceleration -0.350 m/s2. Suppose it moves with constant acceleration for 3.20 s. (a) Find the position of the particle after this time. m (b) Find its velocity at the end of this time interval.   m/s We take the same particle and give it the same initial conditions as before. Instead of having a constant acceleration, it oscillates in simple...
A particle moves along the x axis. It is initially at the position 0.230 m, moving...
A particle moves along the x axis. It is initially at the position 0.230 m, moving with velocity 0.200 m/s and acceleration -0.420 m/s2. Suppose it moves with constant acceleration for 5.30 s. (a) Find the position of the particle after this time. m (b) Find its velocity at the end of this time interval. m/s We take the same particle and give it the same initial conditions as before. Instead of having a constant acceleration, it oscillates in simple...
please do 1,2 and 3 thanks 1.The position of a particle moving along the x axis...
please do 1,2 and 3 thanks 1.The position of a particle moving along the x axis is given in centimeters by x = 9.12 + 1.75 t3, where t is in seconds. Calculate (a) the average velocity during the time interval t = 2.00 s to t = 3.00 s; (b) the instantaneous velocity at t = 2.00 s; (c) the instantaneous velocity at t = 3.00 s; (d) the instantaneous velocity at t = 2.50 s; and (e) the...
The velocity of a particle moving along the x-axis varies with time according to v(t) =...
The velocity of a particle moving along the x-axis varies with time according to v(t) = A + Bt−1, where A = 7 m/s, B = 0.33 m, and 1.0 s ≤ t ≤ 8.0 s. Determine the acceleration (in m/s2) and position (in m) of the particle at t = 2.6 s and t = 5.6 s. Assume that x(t = 1 s) = 0. t = 2.6 s acceleration  m/s2 position  m ? t = 5.6 s acceleration  m/s2   position  m ?
A particle moves along one dimension with a constant acceleration of 4.60 m/s2 over a time...
A particle moves along one dimension with a constant acceleration of 4.60 m/s2 over a time interval. At the end of this interval it has reached a velocity of 13.8 m/s. (a) If its original velocity is 6.90 m/s, what is its displacement (in m) during the time interval? m (b) What is the distance it travels (in m) during this interval? m (c) A second particle moves in one dimension, also with a constant acceleration of 4.60 m/s2 ,...
The position of a particle moving along the x axis is given in centimeters by x...
The position of a particle moving along the x axis is given in centimeters by x = 9.31 + 1.02 t3, where t is in seconds. Calculate (a) the average velocity during the time interval t = 2.00 s to t = 3.00 s; (b) the instantaneous velocity at t = 2.00 s; (c) the instantaneous velocity at t = 3.00 s; (d) the instantaneous velocity at t = 2.50 s; and (e) the instantaneous velocity when the particle is...
The position of a particle moving along the x axis is given in centimeters by x...
The position of a particle moving along the x axis is given in centimeters by x = 9.58 + 1.68 t3, where t is in seconds. Calculate (a) the average velocity during the time interval t = 2.00 s to t = 3.00 s; (b) the instantaneous velocity at t = 2.00 s; (c) the instantaneous velocity at t = 3.00 s; (d) the instantaneous velocity at t = 2.50 s; and (e) the instantaneous velocity when the particle is...
The position of a particle moving along the x axis is given in centimeters by x...
The position of a particle moving along the x axis is given in centimeters by x = 9.16 + 1.52 t3, where t is in seconds. Calculate (a) the average velocity during the time interval t = 2.00 s to t = 3.00 s; (b) the instantaneous velocity at t = 2.00 s; (c) the instantaneous velocity at t = 3.00 s; (d) the instantaneous velocity at t = 2.50 s; and (e) the instantaneous velocity when the particle is...
The position of a particle moving along the x axis is given in centimeters by x...
The position of a particle moving along the x axis is given in centimeters by x = 9.18 + 1.66 t3, where t is in seconds. Calculate (a) the average velocity during the time interval t = 2.00 s to t = 3.00 s; (b) the instantaneous velocity at t = 2.00 s; (c) the instantaneous velocity at t = 3.00 s; (d) the instantaneous velocity at t = 2.50 s; and (e) the instantaneous velocity when the particle is...