Question

If a disk is rotating from rest with an angular acceleration of 1.72 rad/s^2 for 5.67...

If a disk is rotating from rest with an angular acceleration of 1.72 rad/s^2 for 5.67 seconds, what is its final rotational kinetic energy? Take the moment of inertia of the disk to be 0.692 kg*m^2.

Homework Answers

Answer #1

Moment of inertia of the disk = I = 0.692 kg.m2

Initial angular speed of the disk = 1 = 0 rad/s (At rest)

Final angular speed of the disk = 2

Angular acceleration of the disk = = 1.72 rad/s2

Time period = T = 5.67 sec

2 = 1 + T

2 = 0 + (1.72)(5.67)

2 = 9.75 rad/s

Final rotational kinetic energy of the disk = E

E = 32.9 J

Final rotational kinetic energy of the disk = 32.9 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An ice skater spins about a vertical axis with an angular speed of 15 rad/s with...
An ice skater spins about a vertical axis with an angular speed of 15 rad/s with arms fully extended horizontally. Then the arms are pulled in quickly with no friction. Suppose the initial rotational inertia is 1.72 kg*m^2 and the final is .61 kg*m^2. a) what is the final angular velocity of the skater? b) what is the change in the skater's kinetic energy? c) where does the additional kinetic engery come from? What is being done when the arms...
A disk (mass of 3 kg, radius 30 cm) is rotating with an angular velocity w1=...
A disk (mass of 3 kg, radius 30 cm) is rotating with an angular velocity w1= 5 rad/s. A second disk (mass 2kg, radius 15cm), which is rotating at w= -7 rad/s is dropped on top of the first disk. The disks are dropped so that they share a rotational axis, and they stick together. The moment of inertia of a disk is 1/2mr^2. What is the final angular speed of the two disks?
A 0.50 m radius, 1.5 kg wheel is accelerated from rest at 3.00 rad/s2 for 8.00...
A 0.50 m radius, 1.5 kg wheel is accelerated from rest at 3.00 rad/s2 for 8.00 seconds. Find the following:        Given: a. The moment of inertia of the wheel. b. The torque acting on the wheel. c. The final angular velocity after the 8 seconds. d. The final rotational kinetic energy after the 8 seconds.
Two disks are rotating about the same axis. Disk A has a moment of inertia of...
Two disks are rotating about the same axis. Disk A has a moment of inertia of 6 kg · m2 and an angular velocity of +10 rad/s. Disk B is rotating with an angular velocity of –4 rad/s and has a moment of inertia of 4kgm2. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit. The axis of rotation for this unit is the same as that...
A .13 kg disk is rotating at an angular speed of 57 rad/s. The disk has...
A .13 kg disk is rotating at an angular speed of 57 rad/s. The disk has a radius of .25m. The disk speeds up for 3 s. After the 3 s have passed, the edge of the disk is under a centripetal forxe of 313.13 N. What is the centripetal acceleration of the disk at this time? What is the final angular velocity of the disk after the 3 s? What is the angular acceleration during the 3 s interval...
A disk with mass m = 10.3 kg and radius R = 0.34 m begins at...
A disk with mass m = 10.3 kg and radius R = 0.34 m begins at rest and accelerates uniformly for t = 16.8 s, to a final angular speed of ω = 26 rad/s. 1) What is the angular acceleration of the disk? rad/s2 2) What is the angular displacement over the 16.8 s? rad 3) What is the moment of inertia of the disk? kg-m2 4) What is the change in rotational energy of the disk? J 5)...
A solid disk rotates in the horizontal plane at an angular velocity of 0.0663 rad/s with...
A solid disk rotates in the horizontal plane at an angular velocity of 0.0663 rad/s with respect to an axis perpendicular to the disk at its center. The moment of inertia of the disk is 0.162 kg·m2. From above, sand is dropped straight down onto this rotating disk, so that a thin uniform ring of sand is formed at a distance of 0.381 m from the axis. The sand in the ring has a mass of 0.497 kg. After all...
A wheel released from rest is rotating with constant angular acceleration of 2.5 rad/s2. (a) After...
A wheel released from rest is rotating with constant angular acceleration of 2.5 rad/s2. (a) After 2.5 s, what is its angular velocity? rad/s (b) Through what angle has the wheel turned? rad (c) How many revolutions has it made? rev (d) What is the speed of a point 1.0 m from the axis of rotation? m/s What is the magnitude of the total acceleration of the same point? m/s2
A disk with mass m = 8.5 kg and radius R = 0.35 m begins at...
A disk with mass m = 8.5 kg and radius R = 0.35 m begins at rest and accelerates uniformly for t = 18.9 s, to a final angular speed of ? = 29 rad/s. a) What is the angular acceleration of the disk? b) What is the angular displacement over the 18.9 s? c) What is the moment of inertia of the disk? d) What is the change in rotational energy of the disk? e) What is the tangential...
A disk with mass m = 9.5 kg and radius R = 0.3 m begins at...
A disk with mass m = 9.5 kg and radius R = 0.3 m begins at rest and accelerates uniformly for t = 18 s, to a final angular speed of ω = 28 rad/s. A)What is the angular acceleration of the disk? B)What is the angular displacement over the 18 s? C)What is the moment of inertia of the disk? D)What is the change in rotational energy of the disk? E)What is the tangential component of the acceleration of...