Question

The heat capacity at constant volume of an ideal gas depends on: Select one: a. The...

The heat capacity at constant volume of an ideal gas depends on: Select one: a. The number of molecules b. Temperature c. None of the options shown d. The volume e. The pressure

Homework Answers

Answer #1

heat capacity at constant volume is related to the heat require by a gas to raise its temperature by dT is given by

dQ = n Cv dT

since volume is constant, therefore the heat is stored in the form of internal energy and we know that internal energy is state function of temperature which means the internal energy does not depends on the path followed to reach the final state but solely depends on the final state of the system (no matter how that state have been reached/achieved).

Therefore, the heat capacity at constant volume depends on temperature.

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The heat capacity at constant volume of a certain amount of a monatomic gas is 53.7...
The heat capacity at constant volume of a certain amount of a monatomic gas is 53.7 J/K. (a) Find the number of moles of the gas. in mol (b) What is the internal energy of the gas at T = 286 K? in kJ (c) What is the heat capacity of the gas at constant pressure? in J/k
The heat capacity at constant pressure of a certain amount of a diatomic gas is 13.2...
The heat capacity at constant pressure of a certain amount of a diatomic gas is 13.2 J/K. (a) Find the number of moles of the gas. (b) What is the internal energy of the gas at T = 312 K? (c) What is the molar heat capacity of this gas at constant volume? (d) What is the heat capacity of this gas at constant volume?
The heat capacity at constant pressure of a certain amount of a diatomic gas is 13.2...
The heat capacity at constant pressure of a certain amount of a diatomic gas is 13.2 J/K. (a) Find the number of moles of the gas. (b) What is the internal energy of the gas at T = 312 K? (c) What is the molar heat capacity of this gas at constant volume? (d) What is the heat capacity of this gas at constant volume?
Consider 14.61 moles of an ideal diatomic gas. (a) Find the total heat capacity of the...
Consider 14.61 moles of an ideal diatomic gas. (a) Find the total heat capacity of the gas at (i) constant volume and (ii) constant pressure assuming that the molecules translate and vibrate but do not rotate. Be sure to clearly explain how the equipartition of energy is used to solve this problem. (b) Repeat problem (a) above except assume that the molecules translate, rotate and vibrate.
The molar heat capacity for carbon monoxide at constant volume is CV,m = 20.17 J/(K·mol). A...
The molar heat capacity for carbon monoxide at constant volume is CV,m = 20.17 J/(K·mol). A 13.00-L fixed-volume flask contains CO(g) at a pressure of 3.00 kPa and a temperature of 25.0 °C. Assuming that carbon monoxide acts as an ideal gas and that its heat capacity is constant over the given temperature range, calculate the change in entropy for the gas when it is heated to 800.0 °C.
An ideal monatomic gas is contained in a vessel of constant volume 0.400 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.400 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 18.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. 80.99 Correct: Your answer is...
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 24.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. Your response differs from the...
The constant-pressure heat capacity of a sample of a perfect gas was found to vary with...
The constant-pressure heat capacity of a sample of a perfect gas was found to vary with temperature according to the expression Cp (J K−1) = 20.17 + 0.4001(T/K). Calculate q, w, ΔU, and ΔH when the temperature is raised from 0°C to 100°C (a) at constant pressure, (b) at constant volume.
28 moles of an ideal gas with a molar specific heat at constant volume of cv=3.2R...
28 moles of an ideal gas with a molar specific heat at constant volume of cv=3.2R is initially in state "A" at pressure 73390 Pa and volume 1.0 m3. The gas then expands isobarically to state "B" which has volume 2.6?3m3. The gas then cools isochorically to state "C". The gas finally returns from state "C" to "A" via an isothermal process. What is the adiabatic constant γ for this gas? What is Q during the expansion from "A" to...
One mole of an ideal gas initially at temperature T0 reversibly expands from volume V0 to...
One mole of an ideal gas initially at temperature T0 reversibly expands from volume V0 to 2V0, (a) at constant temperature (b) at constant pressure. Calculate the work, the heat, and change in internal energy of the gas in each process.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT