Question

A person is using a concave make-up mirror to examine a boil that is forming on...

A person is using a concave make-up mirror to examine a boil that is forming on their face. The boil has already grown to 6 mm in diameter. The person holds the mirror 10 cm from their face to get a magnification of 1.4.


What is the size of the mole seen in the mirror? in mm.

Where is the image formed? in cm. In front or behind the mirror?

What is the focal length of this mirror? in cm

The person, disgusted by the giant boil, steps two paces or 133 cm away from the mirror. At this distance they now see an image of their entire head formed by the mirror.
Where is the image formed? in cm. In front or behind the mirror?

If their head is 25 cm in size, then The image of the head that is formed by the mirror is ____ cm tall and upright or inverted?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A person is using a concave make-up mirror to examine a boil that is forming on...
A person is using a concave make-up mirror to examine a boil that is forming on their face. The boil has already grown to 1.2 mm in diameter. The person holds the mirror 8 cm from their face to get a magnification of 1.2. What is the size of the mole seen in the mirror? 9.60 mm. Computer's answer now shown above. Incorrect. Tries 2/2 Previous Tries Where is the image formed? 9.60 cm behind the mirror. Computer's answer now...
A 28 cm tall object is placed in front of a concave mirror with a radius...
A 28 cm tall object is placed in front of a concave mirror with a radius of 37 cm. The distance of the object to the mirror is 94 cm. Calculate the focal length of the mirror. Calculate the image distance. Calculate the magnification of the image (Remember, a negative magnification corresponds to an inverted image). Calculate the magnitude of the image height.
A concave spherical mirror has a radius of curvature of 18.0 cm. Locate the image for...
A concave spherical mirror has a radius of curvature of 18.0 cm. Locate the image for each of the following object distances. (Enter 0 for M and the distance if no image is formed.) (a) do = 36.0 cm M=_____, _____cm (b) do = 18.0 cm M=_____, ______cm (c) do = 9.0 cm M=_____, _____cm For a,b,c name each orientation (choices are below): in front of the mirror, real, and upright in front of the mirror, real and inverted behind...
An object is 38 cm away from a concave mirror that has a focal length of...
An object is 38 cm away from a concave mirror that has a focal length of 12 cm. a. Find where the image of the object will be located by solving for the image position, d , in the mirror equation. i b. Will the image be upright or inverted? Use the magnification equation and the fact that if magnification (m) is negative then the image is inverted.
An object is placed 25 cm in front of a concave mirror with a focal length...
An object is placed 25 cm in front of a concave mirror with a focal length of 15 cm. Determine the position of the image formed by the mirror. Is the image real or virtual? How do you know? Determine the magnification of the image. Is the image upright or inverted? How do you know? Does the image appear to be larger or smaller than the object? How do you know? please show all work for each question asked.
A 31 cm tall object is placed in front of a concave mirror with a radius...
A 31 cm tall object is placed in front of a concave mirror with a radius of 32 cm. The distance of the object to the mirror is 88 cm. Calculate the focal length of the mirror. Tries 0/20 Calculate the image distance. Tries 0/20 Calculate the magnification of the image (Remember, a negative magnification corresponds to an inverted image). Tries 0/20 Calculate the magnitude of the image height.
An object is placed 10 cm in front of a concave mirror whose focal length is...
An object is placed 10 cm in front of a concave mirror whose focal length is 15 cm. The object is 2.8 cm tall. Determine (a) the location of the image, taking a real image as a positive value and a virtual image as a negative value. (b) Determine the height of the image, where an upright image will have a positive height and an inverted image will have a negative height.
1. If an object is inside the focal point of a concave mirror, the (answer choices:...
1. If an object is inside the focal point of a concave mirror, the (answer choices: image will be inverted, image will be real, image distance will be greater than the object distance, or magnification will be less than 1)? 2. A diverging lens has a of focal length of -58.5 cm. A real object is placed 25.3 cm in front of the lens. a.) What is the image distance? b.) Which side of the lens is the image located...
1. If an object is inside the focal point of a concave mirror, the (answer choices:...
1. If an object is inside the focal point of a concave mirror, the (answer choices: image will be inverted, image will be real, image distance will be greater than the object distance, or magnification will be less than 1)? 2. A diverging lens has a of focal length of -58.5 cm. A real object is placed 25.3 cm in front of the lens. a.) What is the image distance? b.) Which side of the lens is the image located...
An object is 17.7 cm away from a concave mirror with focal length 14.2 cm. (a)...
An object is 17.7 cm away from a concave mirror with focal length 14.2 cm. (a) Find the image distance, q. cm (b) Find its magnification. (c) State whether the image is real or virtual. real virtual      (d) State whether the image is upright or inverted. upright inverted     I WILL RATE