Question

Consider the autonomous differential equation dy/ dt = f(y) and suppose that y1 is a critical...

Consider the autonomous differential equation dy/ dt = f(y) and suppose that y1 is a critical point, i.e., f(y1) = 0.

Show that the constant equilibrium solution y = y1 is asymptotically stable if f 0 (y1) < 0 and unstable if f 0 (y1) > 0.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the autonomous first-order differential equation dy/dx=4y-(y^3). 1. Classify each critical point as asymptotically stable, unstable,...
Consider the autonomous first-order differential equation dy/dx=4y-(y^3). 1. Classify each critical point as asymptotically stable, unstable, or semi-stable. (DO NOT draw the phase portrait and DO NOT sketch the solution curves) 2. Solve the Bernoulli differential equation dy/dx=4y-(y^3).
For the autonomous differential equation dy/dt=1-y^2, sketch a graph of f(y) versus y, identify the equilibrium...
For the autonomous differential equation dy/dt=1-y^2, sketch a graph of f(y) versus y, identify the equilibrium solutions identify them as stable, semistable or unstable, draw the phase line and sketch several graphs of solutions in the ty-plane.
] Consider the autonomous differential equation y 0 = 10 + 3y − y 2 ....
] Consider the autonomous differential equation y 0 = 10 + 3y − y 2 . Sketch a graph of f(y) by hand and use it to draw a phase line. Classify each equilibrium point as either unstable or asymptotically stable. The equilibrium solutions divide the ty plane into regions. Sketch at least one solution trajectory in each region.
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a...
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a first-order differential equation in terms of the variables u. Solve the first-order differential equation for u (using either separation of variables or an integrating factor) and integrate u to find y. (b) Write out the auxiliary equation for the differential equation and use the methods of Section 4.2/4.3 to find the general solution. (c) Find the solution to the initial value problem y′′+ 9y′=...
Choose the correct answers If y1 and y2 are two solutions of a nonhomogeneous equation ayjj+...
Choose the correct answers If y1 and y2 are two solutions of a nonhomogeneous equation ayjj+ byj+ cy =f (x), then their difference is a solution of the equation ayjj+ byj+ cy = 0. If f (x) is continuous everywhere, then there exists a unique solution to the following initial value problem.                                   f (x)yj= y,   y(0) = 0 The differential equation yjj + t2yj − y = 3 is linear. There is a solution to the ODE yjj+3yj+y...
Consider the differential equation. Find the solution y(0) = 2. dy/dt = 4t/2yt^2 + 2t^2 +...
Consider the differential equation. Find the solution y(0) = 2. dy/dt = 4t/2yt^2 + 2t^2 + y + 1
If the equation dx/dt = f(x, y), dy/dt = g(x, y) has a locally stable equilibrium...
If the equation dx/dt = f(x, y), dy/dt = g(x, y) has a locally stable equilibrium at the origin (0, 0), does the Jacobian matrix J(x, y) satisfy: det J(0, 0) > 0, Tr J(0, 0) < 0 and why?
Considering the differential equation dx/dt = y − x^2 , dy/dt = y − x What...
Considering the differential equation dx/dt = y − x^2 , dy/dt = y − x What would be the Jacobian matrix J(x,y), as well as the eigenvalues/types at each equilibrium.
DIFFERENTIAL EQUATIONS PROBLEM Consider a population model that is a generalization of the exponential model for...
DIFFERENTIAL EQUATIONS PROBLEM Consider a population model that is a generalization of the exponential model for population growth (dy/dt = ky). In the new model, the constant growth rate k is replaced by a growth rate r(1 - y/K). Note that the growth rate decreases linearly as the population increases. We then obtain the logistic growth model for population growth given by dy/dt = r(1-y/K)y. Here K is the max sustainable size of the population and is called the carrying...
Consider the nonlinear second-order differential equation 4x"+4x'+2(k^2)(x^2)− 1/2 =0, where k > 0 is a constant....
Consider the nonlinear second-order differential equation 4x"+4x'+2(k^2)(x^2)− 1/2 =0, where k > 0 is a constant. Answer to the following questions. (a) Show that there is no periodic solution in a simply connected region R={(x,y) ∈ R2 | x <0}. (Hint: Use the corollary to Theorem 11.5.1>> If symply connected region R either contains no critical points of plane autonomous system or contains a single saddle point, then there are no periodic solutions. ) (b) Derive a plane autonomous system...