Question

A simple Atwood's machine uses two masses, m1 and m2. Starting from rest, the speed of...

A simple Atwood's machine uses two masses, m1 and m2. Starting from rest, the speed of the two masses is 4.0 m/s at the end of 8.0 s. At that instant, the kinetic energy of the system is 90 J and each mass has moved a distance of 16.0 m. Determine the values of m1 and m2.

Homework Answers

Answer #1

K.E.= 90J=  1/2m1v^2+1/2m2v^2 = 0.5*4^2(m1+m2)

So, m1+m2=11.25kg__________________ (A)

Now, assuming that m1 moves upwards and T is the tension in the rope,
T-m1g=m1a ______________________(B)
T-m2g=-m2a ________________(C)
subtracting (B)-(C) gives ;(m2-m1)g=(m1+m2)a

Or, a=(m2-m1)g / (m2+m1)

But, in t= 8s, velocity changes by4m/s. So, a= 4/8= 0.5m/s^2

So, (m2-m1) / (m2+m1) = 0.051

Or, (m2-m1)= 0.574 ___________(D)

So, (A) + (B) = 2m2= 11.82 ; So, m2= 5.9kg

m1= 11.25-5.9= 5.35kg

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A simple Atwood's machine uses two masses, m1 and m2. Starting from rest, the speed of...
A simple Atwood's machine uses two masses, m1 and m2. Starting from rest, the speed of the two masses is 4.0 m/s at the end of 8.0 s. At that instant, the kinetic energy of the system is 90 J and each mass has moved a distance of 16.0 m. Determine the values of m1 and m2.
A simple Atwood's machine uses two masses, m1 and m2. Starting from rest, the speed of...
A simple Atwood's machine uses two masses, m1 and m2. Starting from rest, the speed of the two masses is 6 m/s at the end of 5 s. At that instant, the kinetic energy of the system is 60 J and each mass has moved a distance of 15 m. Determine the values of m1 and m2.
An Atwood's machine consists of two masses, m1 and m2, connected by a string that passes...
An Atwood's machine consists of two masses, m1 and m2, connected by a string that passes over a pulley. If the pulley is a disk of radius R and mass M, find the acceleration of the masses. Express your answer in terms of the variables m1, m2, R, M, and appropriate constants.
An Atwood's machine consists of two masses, m1 and m2, connected by a string that passes...
An Atwood's machine consists of two masses, m1 and m2, connected by a string that passes over a pulley. If the pulley has radius and moment of inertia 1/2 MR^2 about its axle. Determine the acceleration if masses m1 and m2. Compare the situation in which moment of inertia is ignored
Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by...
Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by a massless string. They are released from rest. The coefficent of kinetic friction between the upper block and the surface is 0.440. Assume that the pulley has a negligible mass and is frictionless, and calculate the speed of the blocks after they have moved a distance 68.0 cm.
An Atwood's machine consists of blocks of masses m1 = 12.0 kg and m2 = 22.0...
An Atwood's machine consists of blocks of masses m1 = 12.0 kg and m2 = 22.0 kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M = 7.60 kg and radius r = 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. Two objects, blocks labeled m1 and m2, are connected to a cord which is hung...
An Atwood's machine consists of blocks of masses m1 = 13.0 kg and m2 = 19.0...
An Atwood's machine consists of blocks of masses m1 = 13.0 kg and m2 = 19.0 kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M = 9.20 kg and radius r = 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. (a) Why must the tension T2 be greater than the tension T1? This answer has...
Objects with masses m1 = 12.0 kg and m2 = 8.0 kg are connected by a...
Objects with masses m1 = 12.0 kg and m2 = 8.0 kg are connected by a light string that passes over a frictionless pulley as in the figure below. If, when the system starts from rest, m2 falls 1.00 m in 1.48 s, determine the coefficient of kinetic friction between m1 and the table.    Express the friction force in terms of the coefficient of kinetic friction. Obtain an expression for the acceleration in terms of the masses and the...
Objects with masses m1 = 11.0 kg and m2 = 8.0 kg are connected by a...
Objects with masses m1 = 11.0 kg and m2 = 8.0 kg are connected by a light string that passes over a frictionless pulley as in the figure below. If, when the system starts from rest, m2 falls 1.00 m in 1.54 s, determine the coefficient of kinetic friction between m1 and the table.
Two isolated masses, M1 = 2.5 kg and M2 = 619.0 kg are initially at rest,...
Two isolated masses, M1 = 2.5 kg and M2 = 619.0 kg are initially at rest, a distance d= 146.0 cm apart. Their gravitational attraction is the only force acting. Calculate the time it takes for M1 to move from that distance to 144.0 cm from M2. Assume that M2 does not move and that the force is constant over that small distance, and equal to that at 145.0 cm. Find the speed of M1 when d = 144.0 cm....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT