Question

A diffraction grating has 5000 rulings per centimeter. It is used to observe the light of...

A diffraction grating has 5000 rulings per centimeter. It is used to observe the light of wavelength 546.08 nm.

1) At what angle does the m = 2 maximum occur?

2) What is the highest order maximum observed and at what angle does it occur?

3) If this wavelength has to be resolved from a wavelength of 546.06 nm, what is the minimum chromatic resolving power required?

4) If the two wavelengths are to be resolved in the m = 2 order, what is the minimum width of the grating?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A. A diffraction grating has 2400 lines per centimeter. At what angle in degrees will the...
A. A diffraction grating has 2400 lines per centimeter. At what angle in degrees will the first-order maximum be for 522 nm wavelength light? B. What is the wavelength of light (in nanometers) falling on double slits separated by 2.34 μm if the third-order maximum is at an angle of 62.5º? C. At what angle, in degrees, is the second minimum for 555 nm light falling on a single slit of width 2.35 μm ? D. Find the distance between...
Monochromatic light at 577 nm illuminates a diffraction grating with 325 lines/mm. Determine (a) the angle...
Monochromatic light at 577 nm illuminates a diffraction grating with 325 lines/mm. Determine (a) the angle to the first - order maximum, (b) the highest order that can be observed with this grating at the given wavelength, and (c) the angle to this highest - order maximum
A diffraction grating with 67 slits per centimeter is used to measure the wavelengths emitted by...
A diffraction grating with 67 slits per centimeter is used to measure the wavelengths emitted by hydrogen gas. At what angles in the third-order spectrum would you expect to find the two violet lines of wavelength 434 nm and of wavelength 410 nm? (angles in radians) The 434 nm line: The 410 nm line:
White light is spread out into its spectral components by a diffraction grating. If the grating...
White light is spread out into its spectral components by a diffraction grating. If the grating has 2055 lines per centimeter, at what angle does red light of wavelength 640 nm appear in first-order spectrum? (Assume that the light is incident normally on the grating.) °
A student views a neon light tube through a spectroscope, which has a diffraction grating of...
A student views a neon light tube through a spectroscope, which has a diffraction grating of 550 lines/mm and a viewing screen 25 cm from the grating.  The observer sees the first-order red line at a distance of 92.97 mm from the hole in spectroscope viewing screen. 1. Calculate the wavelength of the red light coming from the Neon light tube. 2. Calculate the maximum order of the interference fringe for this wavelength. 3. Calculate the resolving power for this spectroscope...
A diffraction grating has 1 250 rulings/cm. On a screen 1.50 m from the grating, it...
A diffraction grating has 1 250 rulings/cm. On a screen 1.50 m from the grating, it is found that for a particular order m, the maxima corresponding to two closely spaced wavelengths of sodium (589.0 nm and 589.6 nm) are separated by 0.36 mm. Determine the value of m. m =
A diffraction grating has 4 350 rulings/cm. On a screen 2.50 m from the grating, it...
A diffraction grating has 4 350 rulings/cm. On a screen 2.50 m from the grating, it is found that for a particular order m, the maxima corresponding to two closely spaced wavelengths of sodium (589.0 nm and 589.6 nm) are separated by 7.50 mm. Determine the value of m. m= ___________
Image a square aperture of width 149 \[Mu]m, 2775 mm away from a diffraction grating with...
Image a square aperture of width 149 \[Mu]m, 2775 mm away from a diffraction grating with a groove spacing of 1888 grooves/mm. You illuminate the diffraction grating by sending polychromatic light where the wavelengths are relatively close together and the average wavelength is 1037 nm through the square aperture onto the diffraction grating. What is the resolving power of the diffraction grating for second order light in this setup? (Assume the diffraction pattern is a Fraunhofer diffraction pattern.)
You have a diffraction grating with 3000 lines/cm. You also have a light source that emits...
You have a diffraction grating with 3000 lines/cm. You also have a light source that emits light at 2 different wavelengths, 428 nm and 707 nm, at the same time. The screen for your experiment is 1.5 meters from the diffraction grating. A. What is the line spacing for the grating? B. What is the difference in the angle of the 2nd bright fringe for each wavelength for this grating? C. Which wavelength is closer to the center of the...
A diffraction grating has 1 950 rulings/cm. On a screen 1.00 m from the grating, it...
A diffraction grating has 1 950 rulings/cm. On a screen 1.00 m from the grating, it is found that for a particular order m, the maxima corresponding to two closely spaced wavelengths of sodium (589.0 nm and 589.6 nm) are separated by 0.42 mm. Determine the value of m. Exact answers with detail please
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT